Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Периодичность атомных и ионных радиусов

    На примере изменения атомных и ионных радиусов и ионизационных потенциалов s-элементов первой и второй подгрупп проиллюстрируйте явление вторичной периодичности свойств элементов. [c.158]

    В химии редкоземельных элементов наиболее ярко проявляется внутренняя периодичность, особенно для производных в характеристической степени окисления. Объяснение этому факту было дано в гл. I, 5. Для иллюстрации внутренней периодичности в табл. 5 приведены цвет гидратированных ионов Э , стандартные энергии Гиббса образования трифторидов и проявляемые степени окисления. Наблюдается удивительная аналогия в свойствах элементов, находящихся друг под другом. В каждой семерке, составляющей внутренний период, ионизационные потенциалы третьего порядка монотонно растут (см. табл. 3) с уменьшением атомных радиусов в результате лантаноидной контракции. Но начало нового внутреннего периода (переход от Ей к Gd) сопровождается уменьшением третьего ионизационного потенциала на 4 В, У европия впервые в первой семерке достигается устойчивая наполовину заполненная 4/ -оболочка. У гадолиния же при той же устойчивой 4/,-оболочке появляется один электрон на Sii-оболочке, который намного легче удаляется, потому что этот электрон делает стабильную 5 /°-оболочку неустойчивой. Для элементов, следующих за Gd, вновь наблюдается монотонное возрастание третьего ионизационного потенциала вследствие лантаноидного сжатия. Благодаря стабильности указанной 4/ -оболочки европий часто функционирует в степени окисления 4-2 за счет бз -электронов, а один из семи неспаренных электронов на 4/ -оболочке участвует в образовании связей в более жестких условиях. Для его аналога иттербия картина схожая, только в качестве устойчивой выступает уже полностью заселенная 4/ -обо-лочка. В случае самария и тулия, находящихся левее указанных [c.172]


    Большинство свойств элементов (и их соединений), как уже отмечалось, проявляет явную периодичность, обусловленную электронной конфигурацией атомов. Из этих свойств можно выбрать наиболее важные, имеющие особое значение при объяснении или предсказании химических свойств элементов энергия ионизации, энергия сродства к электрону, проявляемые степени окисления, атомные и ионные радиусы, электроотрицательность, энергия связи, окислительно-восстановительный потенциал. Эта глава посвящена более или менее детальному рассмотрению некоторых из этих свойств, причем ни порядок расположения, ни объем материала не отражают важности того или иного свойства. Окисли-тельно-восстановительные потенциалы и их периодичность обсуждены в гл. 8. [c.106]

    Связь периодичности с размерами атомов и ионов известна с давнего времени. Еще Лотар Мейер представил кривую периодичности атомных объемов, показанную на рис. 3-2. Она, кстати, принесла ему большую славу, чем его периодическая таблица, построенная на основе физических свойств элементов в свободном виде. Таким образом, атомный объем, определяемый простым делением массы моля атомов (в граммах) на плотность, изменяется периодически с изменением атомного веса элементов, и это тем более удивительно, что плотность элемента в свободном виде является функцией таких факторов, как физическое состояние, аллотропия, температура и вид кристаллической структуры. Например, при расчете атомного объема олова может возникнуть вопрос, какое значение плотности [7, 31 (белая форма) или 5,75 (серая форма) ] использовать. Аналогично обстоит дело и с углеродом 3,51 (алмаз) или 2,25 (графит)]. Именно поэтому размеры атомов или ионов сейчас рассматривают в единицах их радиусов. [c.107]

    В химии редкоземельных элементов наиболее ярко проявляется внутренняя периодичность, особенно для производных в характеристической степени окисления. Объяснение этому факту было дано в 5 гл. X. Для иллюстрации внутренней периодичности в табл. 25 приведены цвет гидратированных ионов Э , стандартные энергии Гиббса образования трифторидов и проявляемые степени окисления. Наблюдается удивительная аналогия в свойствах элементов, находящихся друг под другом. В каждой семерке, составляющей внутренний период, ионизационные потенциалы третьего порядка монотонно растут (см. табл. 24) с уменьшением атомных радиусов вследствие лантаноидной контракции. Но начало нового внутреннего периода (переход от Ей к Gd) сопровождается уменьшением третьего ионизационного потенциала на 4 В. У европия впервые в первой семерке достигается устойчивая наполовину заполненная 4/-оболочка. У гадолиния же при той же устойчивой 4/-оболочке появляется один электрон на 5 -оболочке, который намного легче удаляется, потому что этот электрон делает стабильную 5( 0-оболочку неустойчивой. Для элементов, следующих за Сс1, вновь наблюдается Монотонное возрастание третьего ионизационного потенциала вследствие лантаноидного сжатия. Вследствие стабильности 4/-оболочки европий часто функционирует в степени окисления +2 за счет бб -электронов, а один из семи неспаренных электронов на 4/оболочке участвует в образовании связей в более жестких условиях. Для его аналога иттербия картина схожая, только в качестве устойчивой выступает уже полностью заселенная 4/4-оболочка. В случае самария и тулия, находящихся левее указанных выше Ей и УЬ, 4/- и 4/З-оболочки близки к достижению стабильного состояния, а потому в основном проявляют характеристические степени окисления. Но эти же элементы в более мягких условиях могут быть в степени окисления +2 за счет бя -электронов при квазистабильных 4/- и 4/3-оболочках. Для элементов начала внутренних периодов — Ьа и Сс1 — наблюдается только степень окисления +3 вследствие устойчивости 4/>- и 4/-оболочек, полностью вакантной или наполовину заполненной. А электронами, участвующими в химическом взаимодействии, у них являются 5<Лб 2-электроны, т.е. по три электрона. Следует отметить, что заполненные бв-орбитали также должны быть стабильны, но для лантана и лантаноидов электроны на них являются внешними, а потому слабее связанными с ядром и вследствие этого наиболее подвижными. У [c.351]


    Первая попытка сопоставления атомных размеров была сделана на основе атомных объемов. Для этого послужила кривая атомных объемов Лотара Мейера, изображенная на рис. 3-2, принесшая ему больше славы, чем его периодическая система, основанная на физических свойствах элементов. Как было сказано, атомный объем получается путем деления атомного веса элемента на плотность элемента в свободном виде, и, следовательно, он верен только в том случае, если достоверна плотность. Но плотность элемента в свободном виде зависит в большей степени от его физического состояния, кристаллической структуры, аллотропического видоизменения и температуры, при которой определена плотность. Например, плотность белого олова 7,31, а серого — 5,75. Однако несмотря на все возможные факторы, которые могут влиять на атомный объем, удивительно, что кривая атомных объемов вполне правильно показывает периодичность свойств. Так как невозможно выделить отдельно атом или ион и измерить их радиус, следует полагаться на измерения, сделанные на большом количестве вещества, и допустить, что атомные модели правильны в отношении поведения атомов и ионов во всей структуре вещества. Вскоре стало ясно, что на соответствующие расчеты влияют многие факторы, в числе которых надо упомянуть характер связи (кратная ли связь или простая), степень ионного или [c.104]

    Периодичность атомных и ионных радиусов [c.114]

Рис. 15.4. Периодичность атомных радиусов (а) и сопоставление атомных и ионных радиусов (б) Рис. 15.4. Периодичность атомных радиусов (а) и сопоставление атомных и ионных радиусов (б)
Рис. 3. Периодичность кажущихся атомных и ионных радиусов. Рис. 3. Периодичность <a href="/info/1068734">кажущихся атомных</a> и ионных радиусов.
    ПЕРИОДИЧНОСТЬ АТОМНЫХ И ИОННЫХ РАДИУСОВ [c.119]

    К величинам, которые характеризуют периодичность строения атома в количественном отношении и поддаются непосредственному экспериментальному определению, несомненно, относятся ионизационный потенциал и сродство атома к электрону. Эти величины связаны с изменением состояния электронов, вступающих во взаимодействие, с энергетической точки зрения, и не связаны ни с какими условными разделениями свойств отдельных ионов или атомов поэтому, естественно, что, если данные величины, равно как и свойства веществ, представить как функции порядкового номера характерных атомов, то они оказываются весьма удобными при сравнении изменений свойств веществ. Однако в литературе имеется большое число работ, где связь с периодическим законом устанавливается и через другие величины, например через ионный и атомный радиусы, электроотрицательность [11], эффективные заряды ионов и атомов и другие параметры [12]. Использование указанных величин приводит примерно к таким же результатам, но требует большего числа допущений и предположений, и потому эти пути нам представляются менее эффективными. Поэтому в наших работах для сравнения используются данные по ионизационным потенциалам. [c.7]

    На примере орбитальных атомных и ионных (Ме + и Ме +) радиусов, потенциалов ионизации (I, для элементов первой группы и I1-I-I2 для элементов второй группы) и стандартных энтропий газообразных атомов исследуйте наличие или отсутствие проявлений вторичной периодичности свойств s-элементов, построив соответствующие графики зависимостей указанных параметров от атомного номера элемента. [c.56]

    Так как у элементов одного периода электроны заполняют оболочку с одним и тем же главным квантовым числом, атомные (а также ковалентные и ионные) радиусы при переходе от щелочного металла к благородному газу у меньшаются, а в грулшах (особенно в подфуппах А) с ростом порядкового номера увеличиваются. Таким образом, по диагонали Периодической системы встречаются атомы элементов с примерно одинаковыми атомньпш радиусами, а значит со сходными свойствами. Периодичность в изменении химических свойств элементов объясняется периодичностью повторения сходных электронных конфигураций с ростом заряда ядра или порядкового номера элемента, например, периодически изменяется электроотрицательность - условная величина, характеризующая способность атома в молекуле к притяжению валентные электронов. В табл. 2.2 приведены значения электроотрицательностей химических элементов. Как видно, для элементов подфупп А электроотрицате.льность растет в периодах и падает в грулшах с увеличением порядкового номера. Периодически меняются и л агнитные свойства переходных металлов. [c.21]


    Кривая теплот образования хлоридов с возрастанием атомного номера катиона имеет столь же отчетливо выраженный периодический характер (рис. 31). Разделению элементов на периоды и здесь отвечают инертные газы, не образуюш ие сколько-нибудь устойчивых хлоридов и соответствую-ш ие поэтому наиболее глубоким минимумам. В 1—3-м периодах максимумы теплот образований хлоридов приходятся на водород, литий и натрий. В 4—6-м периодах выявляются по два главных максимума. Первый приходится на щелочной металл — калий, рубидий, цезий или франций, — что соответствует катионам с внешней электронной конфигурацией р и наибольшим ионным радиусом. Вторые максимумы теплот образования хлоридов приходятся на хлориды цинка, кадмия (с катионами, имеющими внешнюю d °-подоболочку) и одновалентного таллия. Минимумы приходятся на элементы I и VIII групп — медь, рутений и золото — и примерно соответствуют окончанию заполнения d-подоболочки у переходных металлов и началу заполнения следующей 8 р -оболочки. В четвертом периоде высшая валентность у хлоридов металлов V—VI групп не проявляется, минимум отсутствует и соответствующий участок кривой имеет сложную форму. Заполнение /-оболочек у лантаноидов и актиноидов намечается в виде третичной периодичности теплот образования их хлоридов. При этом теплоты образования хлоридов приблизительно линейно убывают от La lg к LuGlg в связи с лантаноидным сжатием катионов. Однако тепло-там образования хлоридов европия и иттербия отвечают явные минимумы, разделяющие семейство лантаноидов на цериевую и иттриевую группы. Для актиноидов, которые в отличие от лантаноидов в соединениях с хлором проявляют высшие валентные состояния, теплоты образования хлоридов [c.108]


Смотреть страницы где упоминается термин Периодичность атомных и ионных радиусов: [c.68]    [c.143]    [c.147]    [c.109]    [c.632]    [c.104]   
Смотреть главы в:

Теоретическая неорганическая химия Издание 3 -> Периодичность атомных и ионных радиусов




ПОИСК





Смотрите так же термины и статьи:

Атомный радиус

Ионные радиусы

Радиус периодичность

Радиусы ионов

рий радиус иона



© 2025 chem21.info Реклама на сайте