Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Элементы плотность пара

    Атомная масса элемента приблизительно равна 90. Плотность паров его летучего хлорида по водороду приблизительно равна 116. Что это за элемент Задачу решите устно, пользуясь периодической таблицей. [c.41]

    В муравьиной кислоте отношение масс элементов Н С О = = 1 6 16. Плотность паров этого вещества по водороду Он = = 23. Вывести Формулу вещества. [c.17]


    Выводы Канниццаро были последним звеном в цепи логических рассуждений, которая вела свое начало от Пруста и его закона постоянства состава. Спор был окончен, настало время расчетов. Ученые могли находить точную атомную массу любого элемента, входящего в соединения, плотность паров которых удавалось измерить. Зная атомные массы элементов, можно было вычислять процентный состав новых соединений, что давало возможность однозначно устанавливать их химические формулы. На этой основе было введено понятие моля, которое мы уже сформулировали в гл. 1. Моль определялся как количество вещества в граммах, численно равное его молекулярной массе в шкале Канниццаро (которой мы пользуемся и сегодня разумеется, к нашему времени точность ее стала значительно выше). Отсюда ясно, что моль любого вещества должен содержать одинаковое число молекул. Хотя значение этого числа сначала было неизвестным, ему присвоили название числа Авогадро N в знак запоздалой признательности ученому, внесшему столь большой вклад в развитие химии. [c.289]

    Найдите в периодической таблице элемент, образующий летучее водородное соединение, плотность паров которого почти равна плотности неона. [c.36]

    Для трех соединений, включающих элементы С, Н и 5, получены следующие данные о плотности паров при нормальных условиях и о весовом составе в процентах  [c.290]

    В помещенной ниже таблице указаны плотности паров и весовой состав четырех соединений углерода, водорода и неизвестного элемента X данные относятся к таким же условиям, как и для тех, что приведены в табл. 6-3. Полагая, что атомные массы углерода и водорода известны, определите вероятную атомную массу элемента X и молекулярные формулы соединений А—О. Можно ли, пользуясь периодической таблицей, установить, каким элементом является X  [c.298]

    Способом Канниццаро (1858). Первоначально по плотности пара (газа) находили молекулярную массу возможно большего числа газообразных или легколетучих соединений данного элемента. Затем по результатам их анализа вычисляли, сколько единиц массы приходится на долю этого элемента в молекулярной массе каждого из взятых соединений. Наименьшее из полученных чисел приникали за атомную массу, так как меньше одного атома данного элемента в молекуле веш,ества не может содержаться. Из соединений азота для примера возьмем аммиак М = - 7, содержание азота 82,35% тогда 17—100=л-—82,35, л = 14. Аналогичный расчет по результатам анализа можно производить и для других соединений азота. Наименьшим из полученных чисел остается 14. Следовательно, атомная масса азота равна 14. [c.31]


    Рассмотренные нами методы определения атомных масс не дают вполне точных результатов, так как, с одной стороны, точность определения молекулярной массы по плотности пара редко превышает 1%, а с другой, — правило Дюлонга и Пти позволяет найти лишь приближенное значенне атомной массы. Однако, исходя из получаемых этими методами приближенных величин, легко находить точные значения атомных масс. Для этого надо сравнить найденное приближенное значение мольной массы атомов элемента с его эквивалентной массой. Такое сравнение оказывается полезным, поскольку между мольной массой атомов элемента и его эквивалентной массой существует соотношение, в которое входит также валентность элемента. Рассмотрим последнее понятие несколько подробнее. [c.35]

    Имеются три соединения углерода с элементом V. Соединение А содержит 86,4 вес.% V и имеет плотность паров 3,92 г л при. тех же условиях, что и для данных, приведенных в табл. 6-3. Соединение В имеет 82,6 вес.V и плотность 6,16г-л а соединение С-61,4 вес.% V и плотность 2,77 г-л". Какова максимальная возможная атомная масса элемента V Если найденное значение действительно верно, каковы молекулярные формулы соединений А, В и С Какие другие значения атомной массы V возможны еще При помощи периодической таблицы, помещенной на внутренней стороне обложки книги, попытайтесь установить, что за элемент V. Каковы наиболее вероятные значения молекулярных масс соединений А, В и С  [c.298]

    Данные о факторе сжимаемости необходимы для учета влияния давления на плотность паров при расчете кавитационных явлений в элементах топливной системы двигателей и оценки их динамических характеристик при использовании топлива в качестве хладагента, а также во многих других случаях. [c.49]

    Большое значение имела периодическая система также при устаповлении валентности и атомных масс некоторых элементов. Так, элемент бериллий долгое время считался аналогом алюминия и его оксиду приписывали формулу ВегОз. Исходя из процентного состава и предполагаемой формулы оксида бериллия, его атомную массу считали равной 13,5. Периодическая система показала, что для бериллия в таблице есть только одно место, а именно — над магнием, так что его оксид должен иметь формулу ВеО, откуда атомная масса бериллия получается равной девяти. Этот вывод вскоре был подтвержден определениями атомной массы бериллия по плотности пара его хлорида. [c.55]

    Дело даже не в том, что Д. И. Менделеев опубликовал свою таблицу несколько раньше Л. Мейера. Для Л. Мейера таблица была удобной формой систематики элементов, за которой он не смог увидеть всеобщего закона Природы. В 1870 г. Л. Мейер пишет, что целый ряд элементов по своим свойствам не укладывается в систему, если им приписать общепринятые в то время атомные веса. Указывая на это, Л. Мейер делает следующее заключение Было бы преждевременно принимать изменения до сих пор принятых атомных весов на такой ненадежной основе. Вообще в настоящее вре.мя на подобного рода аргументах нельзя ни слишком сильно полагаться, ни ожидать от них столь же определенного решения вопроса, как от определения теплоемкости или плотности пара . В этой цитате со всей очевидностью проявилось отношение Л. Мейера к периодическому закону. Д. И. Менделеев не только исправил атомные веса бериллия, индия, церия, лантана, иттербия, эрбия, то ьия, урана, но и с большой точностью предсказал свойства еще не открытых элементов — галлия, скандия, германия. В этом и заключается триумф периодического закона Д. И. Менделеева. [c.81]

    При сжигании 2,3 г вещества, состоящего из элементов С, Н и О, образовалось 4,4 г СО. и 2,7 г НаО. Плотность пара вещества по водороду Он, = 23. Вывести формулу и написать уравнение реакции сгорания вещества. [c.21]

    В 1858 г. С. Канниццаро, опираясь на определения плотности паров как простых, так и сложных соединений, используя удельные теплоемкости, а также изоморфизм, раскрывающий аномалии в молекулярной конституции , дал новую систему атомных масс для следующих элементов . [c.262]

    Еще один распространенный тип задач — нахождение молекулярной формулы вещества на основании результатов его анализа. Установить молекулярную формулу вещества — значит найти, сколько атомов каждого из элементов входит в состав молекулы этого вещества. Для этого надо определить молекулярную массу вещества, например, на основании плотности-паров вещества по водороду или другому газу. [c.213]

    Л. Ф. Нильсон совместно со шведским химиком С. О. Петерсоном определил по плотности пара хлорида точную атомную массу бериллия и отнес его ко П группе периодической системы элементов. [c.653]

    Приближенные теоретические расчеты [507] показали, что возбуждение спектров в ПК может обеспечить на порядок более низкие абсолютные й относительные пределы обнаружения большого числа элементов по сравнению с дугой. Успешное применение горячего ПК возможно только при сравнительно небольшой плотности паров в зоне разряда. Это ограничение в сочетании с термическим характером поступления пробы и наличием фракционного испарения определяет основные направления в использовании горячего ПК для анализа чистЫх веществ. С его помощью возможно определение 1) микроколичеств элементов в отсутствие основы (анализ разбавленных растворов и концентратов примесей, предварительно извлеченных из пробы) 2) примесей в присутствии основы при условии их фракционного испарения и малого поступления в-разряд элементов основы 3) трудновозбудимых элементов (например, галогены, Р, 5, 8е, Аз) 4) газов в металлах. [c.187]


    Интересно отметить, что уравнение (3) можно получить, если принять, что коэффициент теплопередачи Ы какого-либо компонента (нри постоянной скорости газа) пропорционален его плотности паров р , возведенной в степень Уз [8], и что площадь пика компонента пропорциональна количеству тепла, перенесенного при прохождении компонента через чувствительный элемент. [c.82]

    Диамагнитная восприимчивость, молярная рефракция и молярное магнитное вращение были рассмотрены как примеры аддитивных свойств. Все они в значительной мере зависят от общего объема молекул и могут поэтому быть представлены как суммы вкладов отдельных атомов, хотя обычно приходится вносить конститутивные поправки. Первое свойство, которое использовалось таким образом, было также наиболее очевидным — это сам молекулярный объем. В 1842 г. Копн выбрал в качестве температуры сравнения точку кипения и показал,что тогда молекулярный объем жидкости можно представить в виде суммы инкрементов от отдельных атомов. Например, молярные объемы членов различных гомологических рядов отличаются на 22,0 сл на каждую включаемую д руппу СНд. При наличии кратных связей приходилось делать поправки, так что это был обычный конститутивный элемент свойства. Молярный объем использовали редко, но в 1924 г. Сегден предположил, что измерение молярных объемов при такой температуре, когда все жидкости обладают одинаковым поверхностным натяжением, может служить лучшей основой для сравнения. Он показал, что величину Му / (р — рО можно рассматривать как такой стандартный объем, и назвал ее парахором (у — поверхностное натяжение жидкости р — ее плотность р — плотность пара при какой-либо удобной температуре). Были определены атомные парахоры, а также поправки на различные характерные особенности структуры. В годы между первой и второй мировыми войнами парахор стал довольно моден, и с его помощью можно было сделать интересные заключения. Так, например, измеряемый парахор тримера ацетальдегида—паральдегида совпадал с величиной,. вычисленной для шестичленного кольца из трех атомов углерода и трех атомов кислорода, без двойных связей впоследствии было показано, что паральдегид действительно имеет такую структуру. Од- [c.393]

    Как было показано выше ( 36), при допущении линейного падения плотности пара от центра кюветы к краям уменьшение количества паров элемента в кювете можно охарактеризовать соотношением [c.370]

    Сам Л. Мейер признавал в 1870 г., что было бы поспешно изменять доныне принятые атомные веса на основании столь непрочного исходного пункта. Вообще, в настоящее время на подобного рода аргументы нельзя ни слитком полагаться, ни ожидать от них столь же определенного решения вопроса, как от определения теплоемкости или плотности пара Через десять лет Л. Мейер вновь пишет Мне не хватило смелости на так далеко идущие предположения, которые убежденно высказал Менделеев . Эти слова были произнесены Л. Мейером в 1880 г. в статье К истории периодической атомистики , в которой он признал, что все следующие положения 1) при расположении элементов в порядке восходяпщх атомных масс наблюдается периодическое изменение свойств элементов 2) величина атомных масс определяет свойства элементов 3) атомные массы некоторых элементов требуют исправления 4) должны существовать некоторые еще не открытые элементы,— были опубликованы Д. И. Менделеевым до него и вообще впервые. [c.280]

    Уже до этого Канниццаро разработал метод определения молекулярных весов по измерению плотности пара и показал, что такие элементы, как водород, кислород и хлор, не существуют в виде свободных атомов, а образуют двухатомные молекулы Нг, О2 и СЬ. Было установлено, что парафиновые углеводороды являются веществами типа водорода. Отсюда был сделан вывод, что сложные радикалы, при выделении их из соединений с другими элементами, например, при действии металла, должны немедленно соединяться с образованием двойных молекул 2 СНз СоНк. Аналогично, поскольку попытки получения радикала метилена неизменно приводили к образованию этилена СН2 = СНг, пришли к выводу, что соединения двухвалентного углерода, за единственным исключением окиси углерода, не способны существовать в изолированном виде. [c.10]

    Способ определения атомных весов тех элементов, плотность паров которых в виде простых веществ неизвестна, у Канниццаро иллюстрируется на примере углерода (стр. 100), но Авогадро все время применял его в своих работах Правда, Авогадро определяет и теоретическое число — молекулярный вес углерода (вдвое больший, чем атомный), что Каннпццаро считает бесполезным и произвольным (стр. 100), однако сам Канниццаро дальше па основании довольно шаткой аналогии пытается решить такой же вопрос для металлов, для которых твердое состояние является основным (стр. 106). Также поступает и Авогадро, принимая сначала, что все молекулы в газообразном состоянии, в том числе теоретически газообразном состоянии, как углерод и металлы, находятся в виде двухатомных молекул. От этого принципа, как мы уже упоминали, он отошел после определения плотности паров фосфора и мышьяка, а еще раньше, в 1821 г., на основании данных Дюлонга и Пти допустил, что молекула ртути составляет только половину той, которую мы ей приписали , то есть допустил, что молекулы ртути одноатомны [c.116]

    Новый элемент породил споры относительно его валентности, которые продолжались несколько десятков лет. Чаще всего предлагали считать элемент трехвалентным по аналогии с алюминием, так как обнаружилась близость некоторых свойств окислов алюминия и бериллия. Соответственно принимали эквивалент его 4,7 и атомный вес 14. И только Д. И. Менделеев в 1869 г. положил конец длительной дискуссии. На основании периодического закона он показал, что бериллий должен иметь атомный вес 9, валентность 2, и поместил его в периодической таблице между литием и бором. Несколько лет спустя этот вывод Менделеева нашел экспериментальное подтверждение благодаря работам по определению плотности пара ВеС12 [1, стр. 12]. [c.165]

    Принимая в качестве руководящей идеи представление о том, что соединения образуются в соответствии с самыми простыми отношениями, Берцелиус впал в ошибку, приписав атомным весам многих металлических элементов значе ця вдвое и вчетверо большие, чем принятые ныне. Этот слабый пункт его атомистического построения, сохранявшийся в течение ряда десятилетий, многими рассматривался как введенный произвольно. Б таблице атомных весов, датированной 1826 г., сохраняется та же ошибка и наряду с ней другая, связанная с тем, что он не различал понятий атома и молекулы, считая, что количества элементов, содержащ иеся в одинаковых объемах в виде газов, пропорциональны их атомным весам. Эти ошибки не позволяли Берцелиусу найти верное решение атомистической проблемы, хотя он предоставил для этого обильный и точный экспериментальный материал. Канниццаро в своем знаменитом Очерке так оценивает эту сторону деятельности Берцелиуса С одной стороны, он развивал дуалистическую теорию Лавуазье, что нашло свое завершение в электрохимической гипотезе, а с другой, познакомившись с теорией Дальтона, подкрепленной опытами Уолластона (результаты которых позволили расширить законы Рихтера Уолластон пытался согласовать их с результатами Пруста), стал применять эту теорию, руководствуясь ею в дальнейших исследованиях и согласуя ее со своей электрохимической дуалис р[вской теорией. Рассматривая ход мыслей Берцелиуса, я ясно пон соображения, в силу которых он пришел к допущению, что атомы, отделенные друг от друга в простых телах, объединяются при образовании атомов соединений первого порядка, а эти, объединяясь простейшим образом, дают сложные атомы второго порядка, и почему Берцелиус, будучи не в силах допустить, что два вещества, давая только одно соединение (из одной молекулы одного вещества и одной другого), образуют две молекулы одинаковой природы, вместо того чтобы объединиться в одну-единственную молекулу, не мог принять гипотезы Авогадро и Ампера, которая во многих случаях приводила к только что сформулированному выводу. Я продолжаю утверждать, что Берцелиус, будучи не в состоянии освободиться от своих дуалистических идей и в то же время желая так или иначе объяснить открытые Гей-Люссаком простые отношения между объемами газообразных соединений и их компонентов, пришел к гипотезе, совершенно отличной от гипотезы Авогадро и Ампера, а именно что одинаковые объемы простых тел в газообразном состоянии содержат одинаковое число атомов, которые целиком входят в соединения. Позднее, когда были определены плотности паров многих простых веществ, Берцелиус ограничил свою гипотезу, говоря, [c.193]

    Многочисленные исследования, проведенные с целью изучения теплоемкости бериллия (В. Мейер, Б. Браунер), измерения плотности пара галогенидов бериллия (Л. Нильсон, О. Петерсон, Б. Браунер), изучения спектров (Д. Чамичан, В. Гартли), подтверждали правильность взглядов И. Авдеева и Д. И. Менделеева на бериллий как на двухвалентный элемент с атомной массой 9,4. [c.271]

    В 1870 г. Д. И. Менделеев изменил значение массы урана (вместо 120 он принял 240), что впоследствии подтвердилось исследованиями К. Циммермана, определившего в 1881 г. плотность паров иВг4 и иСи. Он писал Д. И. Менделееву Я рад, что результат моих исследований полностью подтвердил предсказанный Вами атомный вес 240 и что вместе с этим элемент нашел ясное место в системе Некоторые поправки были внесены Д. И. Менделеевым в атомные массы элементов платиновой группы и редкоземельных элементов. [c.271]

    После такого историко-критического анализа Канниццаро переходит к построению рациональной системы атомных весов, применяя положения молекулярной теории. Он начинает с применения гипотезы Авогадро для определения весов молеку.т согласно Авогадро, молекулярные веса пропорциональны плотностям тел в газообразном состоянии. Так как плотности паров выражают веса молекул, все их можно относить к плотности простого газа, избранной в качестве единицы аналогично тому как поступил Авогадро, Канниццаро принимает вес молекулы водорода равным 2 и дает таблицу сопоставимых молекулярных весов 33 простых и сложных тел, поскольку значения молекулярных весов даны им в одних и тех же едан ах. Именно теперь сопоставление различных количеств одного и тог же элемента как в молекуле свободного тела, так и в молекулах всех его соединений приводит Канниццаро к выводу, что различные количества одного и того же элемента, содержащиеся в различных молекулах, являются целыми крат,ными одного и того же количества, которое, выступая всегда нераздельно, должно с полным основанием именоваться атомом Это закон атомов, который по своей важности превосходит атомную гипотезу, потому что в формулировке различные количества одного и того же элемента, содержащиеся в одинаковых объемах как свободного тела, так и его соединений, являются целыми кратными одного и того же количества, он дает строгое толкование фактам и не ссылается ни на какую гипотезу о конституции вещества. В этом законе заключены закон кратных отношений и закон простых отношений между объемами газов. Но Канниццаро был убежден, что сформулированный закон ведет к экспериментальному подтверждению атомной теории, и поэтому считал, что атом любого простого тела представляет такое его количество, которое входит всегда целиком в равные объемы как свободного тела, так и его соединений. Это количество может быть или равно количеству, содержащемуся в одном объеме свободного тела, или в несколько целых раз меньше его  [c.214]

    Научные работы относятся преимущественно к органической химии. Предложил (1826) способ определения плотности паров веществ, с помощью которого установил атомные массы ряда элементов. Определил (1827) состав ацетона и сложных эфиров совместно с сотрудником П. Булле пришел к выводу, что в эфире, винном спирте и этилене содержится радикал одного и того же состава — этерин. На этом основании выдвинул (1828) этеринную тео- [c.182]

    Самообращение спектральных линий объясняется поглощением излучения возбужденньгх атомов во внешней зоне пламени электродуги (рис. 4). Вокруг высокотемпературной центральной части пламени дуги — ядра (4) располагается газовая оболочка (5), где вследствие более низкой температуры многие атомы находятся в невозбужденном или в недостаточно возбужденном состоянии. Свет, соответствующий спектральной линии какого-либо элемента, излученный в высокотемпературной зоне, для того чтобы попасть в спектрограф, должен пройти через низкотемпературную зону, где недостаточно возбужденные атомы тех же самых элементов могут поглощать часть этого излучения, вызывая ослабление его интенсивности. В спектре такая линия будет выглядеть как бы разделенной на две части темной полоской. На спектрограмме (негативе) эта же линия будет выглядеть как бы разделенной на две части светлой полоской (рис. 5). Ослабление интенсивности в середине линии тел1 сильнее, чем больше концентрация определяемого элемента в пробе. При низких концентрациях самообращение спектральных линий незначительно, так как плотность паров поглощающих атомов сравнительно мала. [c.20]

    Основные научные работы связаны с изучеь ием редких элементов, Открыл (1879) скандий, атомная масса и свойства которого соответствовали предсказанному (1870) Д, И. Менделеевым эка-бору . Совместно со шведским химиком С, О, Петерсоном определил (1884) плотность пара хлорида бериллия и установил точную атомную массу бериллия, что по- [c.364]


Смотреть страницы где упоминается термин Элементы плотность пара: [c.84]    [c.194]    [c.299]    [c.302]    [c.326]    [c.59]    [c.60]    [c.299]    [c.511]    [c.11]    [c.110]    [c.176]    [c.410]    [c.296]   
Сочинения Научно-популярные, исторические, критико-библиографические и другие работы по химии Том 3 (1958) -- [ c.173 ]




ПОИСК





Смотрите так же термины и статьи:

Плотность пара

Плотность паров

Плотность элементов



© 2025 chem21.info Реклама на сайте