Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электроны и химические свойства элемента

    Десять -элементов, — начиная со скандия и кончая цинком,— принадлежат к переходным элементам. Особенность построения электронных оболочек этих элементов, по сравнению с предшествующими (5- и р-элементами) заключается в том, что при переходе к каждому последующему -элементу новый электрон появляется не во внешнем ( = 4), а во втором снаружи ( — 3) электронном слое. В связи с этим важно отметить, что химические свойства элементов в первую очередь определяются структурой внешнего электронного слоя их атомов и лишь в меньшей степени зависят от строения предшествующих (внутренних) [c.95]


    Элементы IVА-группы. Эту группу Периодической системы составляют элементы углерод С, кремний Si, германий Ge, олово Sn и свинец РЬ. Электронная конфигурация внешнего уровня их атомов ns np . В соединениях эти элементы проявляют характерные степени окисления (+11) и (+IV). По электроотрицательности и химическим свойствам элементы С и Si относятся к неметаллам, элементы Ge, Sn и РЬ-к амфотерным элементам, металлические свойства которых возрастают при увеличении порядкового номера и уменьшении степени окисления. [c.146]

    Изменение химических свойств элементов в группах имеет ряд интересных закономерностей. Номер группы соответствует наибольшей степени окисления элементов (см. 5.4). Д. И. Менделеев характеризовал значение высшей валентности элементов на основании их соединений с кислородом. Значение валентности по кислороду по группам возрастает от 1 до 8. Значение валентности по водороду имеет максимум для IV группы. В сумме обе валентности, начиная с IV группы, дают 8 (например, СОа и СН4, UO, и НС1). Номер группы, таким образом, указывает число электронов атомов элементов, которые могут участвовать в образовании химических связей, определяет диапазон валентных возможностей атомов элементов. В этом физический смысл номера группы в периодической системе. [c.90]

    ПЕРИОДИЧЕСКАЯ СИСТЕМА ЭЛЕМЕНТОВ Д. И. МЕНДЕЛЕЕВА — естественная система химических элементов, созданная гениальным русским химиком Д. И. Менделеевым. Расположив элементы в последовательности возрастания атомных масс и сгруппировав элементы с аналогичными свойствами, Д. И. Менделеев составил таблицу элементов, закономерности которой теоретически вытекают из сформулированного им периодического закона Физические и химические свойства элементов, проявляющиеся в свойствах простых и сложных тел, ими образуемых, находятся в периодической зависимости от их атомного веса (1869—1871 гг.). Периодический закон и периодическая система элементов Д. И. Менделеева позволяют установить свя ь между всеми химическими элементами, предсказать существование ранее неизвестных элементов и описать их свойства. Как впоследствии стало известно, периодичность в изменении свойств элементов обусловлена числом электронов в атоме, электронной структурой атома, периодически изменяющейся по мере возрастания числа электронов. Число электронов равно положительному заряду атомного ядра это число равно порядковому (атомному) номеру элемента в периодической системе элементов Д. И. Менделеева. Отсюда современная формулировка периодического закона Свойства элементов, а также свойства образованных ими простых и сложных соединений находятся в периодической зависимости от величины зарядов их атомных ядер (2) . Поскольку атомные массы элементов, как правило, возрастают в той же последовательности, что и заряды атомных ядер, современная форма таблицы периодической системы элементов полностью совпадает с менделеевской, где аргон, кобальт, теллур расположены не в порядке возрастания атомной массы, а на основе их химических свойств. Это несоответствие рассматривалось противниками Д. И. Менделеева как недостаток его системы, но, как позже было доказано, закономерность нарушается в связи с изотопным составом элементов, что также предвидел Д. И. Менделеев. Периодический закон и периодическая система элементов [c.188]


    Некоторые свойства, такие, как ионизационный потенциал, сродство к электрону, электроотрицательность, валентность (степень окисления), а также атомный и ионный радиусы, позволяют предсказать и объяснить химические свойства элементов, также закономерно изменяющиеся с ростом порядкового номера и периодически повторяющиеся у элементов одной группы. [c.107]

    При сопоставлении химических свойств элементов легко установить, что некоторые электроны атома могут значительно легче отделяться от него, чем другие. Это доказывает, что некоторые из электронов вращаются на большем расстоянии от ядра, чем остальные. Так, атомы натрия и калия (первая группа периодической системы) сравнительно легко переходят в состояние однозарядных положительных ионов, т. е. теряют по одному электрону. В настоящее время удается отделить от них и вторые и следующие электроны, превращая атомы в положительные ионы соответственно двухзарядные, трехзарядные и т. д. Однако это можно достигнуть не химическими взаимодействиями, а применяя другие, более сильные средства воздействия (с большей затратой энергии). [c.32]

    Химические свойства элементов. Атомы меди, серебра и золота могут проявлять более высокую степень окисления, чем атомы элементов главной подгруппы. Валентными электронами могут являться не только и5-электроны, но и (п — 1) ( -электроны, так как энергии (п— )с1- и и5-электронов близки. В соответствии с этим элементы подгруппы меди могут проявлять при определенных условиях степени окисления +1, - -2 и +3. Но наиболее характерны степени окисления для меди +1 и, особенно, +2, для серебра - -1, а для золота -(-3 и - -1. [c.232]

    Экспериментальное обоснование периодической системы. Рассмотрение периодической системы показывает, что в группах и подгруппах располагаются электронные аналоги. Электронной аналогии соответствует аналогия и в химических свойствах элементов. Таким образом, при расположении химических элементов в ряд с увеличением атомного номера периодически повторяются [c.37]

    Решающее значение для характеристики химических свойств элементов имеет внешняя электронная оболочка атомов. Менее резко выражена зависимость свойств атомов и ионов от второго снаружи слоя. Влияние структуры этого слоя сказывается тем сильнее, чем меньше электронов в самом внешнем слое. Н. Бор в своем варианте периодической таблицы расположил элементы, исходя из аналогичности электронных структур нейтральных атомов. В рамках помещены элементы, в атомах которых происходит заполнение внутренних электронных слоев второго (простая рамка) или третьего (двойная рамка) снаружи (см. с. 86). [c.85]

    Естественно, что фундаментальный закон химии, открытый Д. И. Менделеевым, — периодический закон—должен найти себе объяснение в закономерности строения атоМов, вскрываемой квантовой механикой. Периодичность в изменении химических свойств элементов при возрастании заряда ядра определяется периодическим повторением у определенных атомов строения внешних электронных оболочек. Легко заметить, что число электронов в последовательности от 5 до ближайшей конфигурации (первый период) или (остальные периоды) равно 2, 8, 8, 18, 32 (табл. 3), т. е. совпадает с числом элементов в периодах системы Д. И. Менделеева и объясняет, почему именно столько элементов содержится в данном периоде. Период начинается элементом, у которого впервые в системе возникает новый квантовый слой, содержащий один л-электрон (щелочной металл), и оканчивается элементом, у которого впервые в этом квантовом слое достраивается шестью электронами -подоболочка (благородные газы). Очевидно, что номер периода )авен главному квантовому числу электронов внешнего слоя. Например, атом натрия, открывающий третий период, и атом аргона, заканчивающий его, имеют конфигурации К 13л и К соответст- [c.60]

    В предыдущих главах было показано, что энергии ионизации, сродство к электрону и электроотрицательности атомов всех элементов удается объяснить на основе рассмотрения орбитальной электронной структуры атомов. Теперь попытаемся связать электронное строение атомов с химическими свойствами элементов и их соединений. Начнем с обсуждения (и составления уравнений) реакций, в которых одни реагенты теряют, а другие приобретают электроны (окислительно-восстановительные реакции). За- [c.415]

    Химические свойства элементов и их соединений являются периодической функцией заряда ядра атома. С ростом заряда ядра, т.е. порядкового номера элемента, периодически меняются строение двух внешних электронных оболочек, радиусы атомов, радиусы и заряды ионов. Эти факторы определяют валентность элемента, его окислительно-восстановительную способность и кислотно-основную характеристику. Количество электронов на двух оболочках (предпоследний и наружный слои) приведено в табл. 4, радиусы атомов — в табл. 5. [c.12]


    Знание электронного строения атомов позволяет подойти к интерпретации химических свойств элементов. Не следует пытаться запоминать все приводимые ниже факты, нужно лишь выделять из описательного материала те свойства, которые подчиняются регулярным периодическим закономерностям и могут быть объяснены электронным строением атомов. Не каждое химическое свойство становится абсолютно ясным, если известно электронное строение атома данного элемента, но многие наблюдаемые факты приобретают на этой основе ясный смысл, и именно этот смысл следует искать в массе химических данных. [c.432]

    В этой главе мы исследуем закономерности, обнаруживаемые во взаимосвязи между физическими и химическими свойствами элементов и их соединений. Эти закономерности приводят непосредственно к важнейшей схеме классификации материи-периодической системе элементов. Эрнсту Резерфорду, который однажды сказал, что существуют два типа науки — физика и коллекционирование марок,-периодическая система элементов могла казаться доведенным до совершенства альбомом марок. Если бы данная глава была последней в нашей книге, его точка зрения представлялась бы оправданной. Однако сведение всех элементов природы в таблицу периодической системы является лишь началом развития химии, а отнюдь не его концом. Установив схему классификации элементов, мы должны найти способ ее объяснения на основе рассмотрения свойств электронов и других субатомных частиц, из которых построены атомы. Такое объяснение-задача следующих глав. Но прежде чем обратиться к теоретическому описанию природы, надо сначала узнать, что она представляет собой в действительности. [c.303]

    Электроны внещних орбиталей атома в основном состоянии. Они в значительной мере определяют химические свойства элемента. [c.34]

    Б62. Для большинства элементов увеличение заряда ядра атома и порядкового номера вызывает изменение количества электронов на внешнем или предпоследнем электронном слое, определяющем в основном химические свойства элементов. [c.207]

    Определенную роль релятивистские эффекты начинают играть для атомов 4-го периода, их роль возрастает при переходе к элементам ниже располагающихся периодов ПС. Поэтому отличия химических свойств элементов 6-го и 7-го периодов и индивидуальные отличия других элементов в различных подгруппах ПС в ряде случаев связаны с релятивистскими эффектами. Хотя их влияние существенно больше для электронов внутренних оболочек, имеется немало примеров определяющей роли релятивистских эффектов и для валентных электронов. [c.86]

    S3. При последовательном увеличении заряда ядер и количества электронов в атомах периодически повторяется структура внешних электронных слоев, в основном определяющих химические свойства элементов. [c.207]

    Десять / -элементов, начиная со скандия и кончая цинком, принадлежат к переходным элементам. Особенность построения электронных оболочек этих элементов по сравнению с предшествующими (з- и р-элементами) заключается в том, что при переходе к каждому последующему -элементу новый электрон появляется не на внешней (п = 4), а на второй снаружи (тг = 3) электронной оболочке. У атомов всех переходных элементов внешняя электронная оболочка образована двумя з-электронами. Существуют -элементы (например, хром, молибден, элементы подгруппы меди), у атомов которых во внешнем электронном слое имеется только один 5-электрон. Причины этих отклонений от типичного порядка заполнения электронных энергетических подуровней рассмотрены в конце раздела. В связи с этим важно отметить, что химические свойства элементов в первую очередь определяются структурой внешней электронной оболочки их атомов и лишь в меньшей степени зависят от строения предшествующих (внутренних) электронных оболочек. Поэтому химические свойства -элементов с увеличением атомного номера изменяются не так резко, как свойства в- и р-элементов. Все -элементы принадлежат к металлам, тогда как заполнение внешнего р-подуровня приводит к переходу от металла к типичному неметаллу [c.68]

    Из изложенного выше следует, что в ряду атомов с последовательно возрастающим порядковым номером (или зарядом ядра) также последовательно увеличивается число электронов в них. Это, в свою очередь, приводит к периодическому повторению подобных конфигураций их электронных оболочек и подоболочек. Большинство же физико-химических и химических свойств элементов сильно зависят именно от строения внешних электронных подоболочек. Поэтому главной причиной периодичности свойств элементов является периодическое появление однотипных электронных конфигураций внешних электронных подоболочек с ростом заряда ядра атома элемента. В связи с этим современная формулировка периодического закона гласит  [c.79]

    Прежде всего, после опытов Э. Резерфорда и установления нуклеарной модели атома стало ясно, что масса атома не играет непосредственно существенной роли в определении химических свойств элементов. Было очевидно, что число электронов атома и характер орбит должны определяться зарядом ядра атома. Уже опыты Э. Резерфорда позволили оценить величины зарядов ядер. [c.454]

    Очень важное значение для изучения химических свойств элементов, исследования структуры внешних электронных слоев атомов имеют излучения, отражаюш,ие изменения энергии валентных электронов. Им соответствуют длины волн в основном видимого (500 нм) и ультрафиолетового диапазона (100 нм). Спектральные исследования в этой области длин волн электромагнитного излучения получили название оптической электронной спектроскопии. Оптические спектры атомов могут быть получены, когда возбужденные тем или иным методом (электронного удара, поглощения кванта света, в результате столкновения при нагревании с другим атомом и т. п.) внешние (валентные) электроны атомов переходят из состояний с большей энергией в состояния с меньшей энергией. При этом излучается квант света, частота которого (см. 3.3) определяется соотношением —Е1=к и характеризует линию спектра. [c.67]

    В подгруппу переходных элементов входят -элементы, расположенные в центральной части больших периодов (IV, V, VI). Вследствие этого сходные по электронному строению и физико-химическим свойствам элементы расположены здесь в горизонтальных рядах, [c.150]

    Строение электронной оболочки атома представляет особый интерес для химии. С перераспределением электронов в оболочках атомов и молекул связаны все химические превращения, поэтому химические свойства элементов определяются структурой электронных оболочек их атомов. [c.60]

    В атоме кислорода внешний слой является вторым от ядра, в атоме серы — третьим, в атоме селена — четвертым, в атоме теллура — пятым и в атоме полония — шестым. Вышеуказанные различия между элементами в подгруппе О—5 — 5е — Те — Ро приводят к закономерному изменению физических и химических свойств элементов уменьшается сверху вниз сродство к электрону, т. е. понижается окислительная активность нейтральных атомов растут восстановительные свойства, увели- [c.106]

    На какие вопросы должна ответить теория строения электронной оболочки атома Вот некоторые из них почему спектр одиоатом-ного газа имеет линейчатый характер и его структура зависит от атомного номера элемента Почему энергия последовательной ионизации атома имеет дискретные значения Чем определяется периодическая зависимость изменения энергии ионизации, сродства к электрону, радиуса атомов от атомного номера элементов Почему атомы способны образовывать химическую связь и химические свойства элементов подчиняются периодическому закону  [c.17]

    Если внимательно посмотреть на электронные конфигурации Ре, Со и N1, то можно предположить, что большое сходство между ними объясняется тем, что их внешняя электронная оболочка (45 ) совершенно одинакова, а различаются лишь их Зй-электроны. А поскольку внешние электроны атомов оказываются в первую очередь ответственными за физические и химические свойства элементов, то отсюда ясна причина такого сходства между Ре, Со и [c.62]

    Структура атомов элементов, включающих 32-электронный слой з-, р , й , / ), который сформировался у лантаноидов (л=4, 7= ==58—71),— лантаноидное сжатие (уменьшение радиуса атомов) — от лантаноидов распространяется на последующие элементы, что сказывается на свойствах элементов с 2>71 (начиная с НГ). Например, плотность металлов от НГ до Аи — Hg примерно вдвое больше плотности -металлов пятого периода (2>39, начиная с 2г). Это закономерно, так как атомные массы -металлов, расположенных после лантаноидов, приблизительно вдвое больше атомных масс их аналогов в пятом периоде, а атомные радиусы (у 2г 0,160 нм, у НГ 0,159 нм и т. д.), и, следовательно, атомные объемы близки. Максимальную плотность имеет осмий (22,5 г/см . Химические свойства -элементов пятого и шестого периодов сходны. Так, 2г по свойствам ближе к Н5, чем к Т1 МЬ ближе к Та, чем к V Мо — к Ш, чемкСг Тс—к Ке, чем к Мп Ru— кОз, чем к Ре НЬ — к 1г, чем к Со Рс1 — к Р1, чем к N1 Ag — к Аи, чем к Си С(1 — к Hg, чем к 2п, [c.89]

    Становится понятным й качественный скачок в свойствах элементов при переходе от периода к периоду. Так, каждый период (кроме первого, сверхмалого) заканчивается инертным элементом со структурой пр . Следующий же период п + 1) возникает в результате образования нового электронного слоя, причем первым элементом этого периода является более активный щелочной металл с конфигурацией внешнего электронного слоя (п + 1) Последний же член периода имеет конфигурацию (п - - 1) р . Следовательно, переход от младшего периода ( ) к старшему п + 1) характеризуется изменением числа электронных оболочек атомов и их структуры. Это и приводит к скачкообразному изменению химических свойств элементов старшего периода по сравнению с соответствующими элементами младшего периода. [c.54]

    Сходство лантаноидов по химическим свойствам настолько близко, что разделение и очистка их чрезвычайно трудны. Различие в растворимости однотипных солей чрезвычайно мало и т. д. Это является результатом того, что химические свойства элементов главным образом зависят от структуры самых внешних слоев, которая у лантаноидов почти одинакова. Изменение же числа электронов в третьем снаружи слое отражается на свойствах очень слабо. [c.427]

    Строение электронных оболочек атомов определяет важнейшие химические свойства элементов валентность, тип химической связи в различных соединениях, физические и химические свойства соединений и многие другие. [c.41]

    Ослабление связи внешних электронов с ядром сказывается также и на химических свойствах. Элементы, находящиеся в конце группы, менее прочно удерживают свои электроны и обладают более характерными металлическими свойствами. [c.46]

    Валентные электроны находятся на дву -трех атомных подуровнях, что предполагает наличие нескольких степеней окисления и разнообразие химических свойств -элементов. [c.183]

    Следующим важнейшим выводом, который следует из анализа данных, приведенных в таблице 6, является вывод о периодическом изменении характера заполнения электронами внешних энергетических уровней, что и вызывает периодические изменения химических свойств элементов и их соединеки . [c.30]

    Роль попятной тенденции в развитии ряда химических элементов в таблице Д. И. Менделеева выполняла валентность. Хотя и она не являлась первопричиной цикличности (возвратов) в изменении химических свойств элементов в ряду. Теперь нам известно, что валентность является следствием послойности заполнения электронных оболочек атомов. [c.152]

    Детальное изучение строения атомов и сопоставление химических свойств элементов с характером распределения электронов по энергетическим уровням в атомах показало, что химические свойства элементов определяются главным образом электронной конфигурацией внешнего энергетического уровня атома, или строением внешней электронной оболочки. Таким образом, причиной периодического изменения (периодической повторяемости) свойств химических элементов является периодическая повторяемость строения внешних электронных о,болочек атомов. В этом заключается физическая сущность периодического закона. [c.58]

    Атом водорода —простейший из всех, которые изучает химия. Решение уравнения Шредингера для него позволило определить стационарные состояния атома, рассчитать его спектр и распределение электронного заряда внутри атома и обьяснить на основе этого его химическое поведение. Обобщение получеггных выводов в сочетании с некоторыми добавочными принципами позволило понять физическую сущность периодического закона и объяснить химические свойства элементов. Поэтому знакомство с химическими системами начинаем с атома водорода и водородоподобных атомов (одноэлектронных атомов с зарядом ядра 4-Ze). Примером водородоподобных систем служат ионы Не , Li +, Ве - и т. д. [c.16]

    Уже отмечалось, что периодичность в измененпи химических свойств элементов неодинакова, т. е. периодическая система включает один период из 2 элементов, два по 8, два по 18 и один 32 элемента. Последний, седьмой, незаконченный период содержит 19 элементов. Такая периодичность связана с закономерностями заполнения электронами энергетических уровней атома или с особенностями формирования электронных оболочек. [c.58]

    Для того чтобы ясно представить эти закономерности, нужно иметь в Еиду, что изменение энергии внешних электронов, обусловливаюш,их химические свойства элемента, при переходе от данного слоя к сле-дуьэщему с ростом п уменьшается (см. рис. 32). [c.74]

    У длинной формы есть много достоинств, но есть и недостатки. Подробно их обсуждали Фостер и Лудер". Вследствие недостатков длинной формы в последнее время предложено множество периодических таблиц, некоторые из них будут рассмотрены в дальнейшем. Однако длинная форма обладает преимуществом перед другими, известными в настоящее время таблицами в том смысле, что она дает понимание электронной основы периодической системы и в то же время четко отражает сходство, различие и ход изменений химических свойств элементов. Поэтому последующее обсуждение периодической системы будет происходить на основе таблицы длинной формы. [c.91]

    У этого класса элементов все уровни, кроме внешнего, заполнены-Сюда относятся элементы, атомы которых во внешнем слое имеют от до /гз пр -электронов. В этом классе, если строго придерживаться указанного выше электронного распределения, будет 44 члена, включая элементы подгрупп меди и цинка. Некоторые авторы предпочитают относить последние шесть элементов к переходным вследствие сходства их по химическим и физическим свойствам с переходными элементами. За это говорят некоторые веские аргументы, особенно, если принять во внимание химию элементов подгруппы меди в их высшей степени окисления. Химические свойства элементов этого класса в большой степени определяются стремлением их атомов получить, отдать или обобщить электроны таким образом, чтобы приобрести электронную конфигурацию инертного газа с большим или меньшим порядковым номером или так называемую конфигурацию псевдоинертного газа п — К этому классу относятся многие металлы и [c.104]

    Второй период образует атомы от до Ne. В направлении — Ке растет эффективный заряд ядра, в связи с чем уменьшаются размеры атомов (см. Гшах), возрастает потенциал ионизации и осуществляется, начиная с В, переход к неметаллам. Потенциал ионизации отражает не только рост в ряду —Ке, но и особенности электронных конфигураций потенциал ионизации у бора ниже, чем у бериллия. Это указывает на упрочнение заполненных нодоболочек ( у бериллия). Более высокий потенциал ионизации азота по сравнению с кислородом указывает на повышенную прочность конфигурации р , в которой каждая орбиталь занята одним / -электроном. Аналогичные соотношения наблюдаются и в следующем периоде у соседей Mg—А1 и Р—5. У атомов второго периода отрыв электрона с внутреннего Ь -слоя требует такого высокого ПИ (75,62 эВ уже у лития), что в химических и оптических процес--сах участвуют только внешни электроны. Сродство к электрону в ряду Ы—Р имеет тенденцию к возрастанию. Но у берилжя оболочка заполнена, и сродство к электрону эндотермично так же, как и у гелия (1л ). Обладая самым высоким потенциалом ионизации ю всех неметаллов и высоким сродством к электрону, фтор является наиболее электроотрицательным элементом в периодической системе. Для атома неона СЭ (Ке)=—0,22 эВ. Оболочка з р атома Ке, электронный октет, характеризуется суммарным нулевым спином и нулевым орбитальным моментом (терм 5о). Все это, вместе с высоким потенциалом ионизации и отрицательным сродством к электрону, обусловливает инертность неона. Такая же з р конфигурация внешнего слоя характерна для вСех элементов нулевой группы. Исследования последних лет показывают, что 1 п, Хе,Кг и Аг дают химические соединения со фтором и кислородом. Очевидно, что з р конфигурация не влечет как непременное следствие химической инертности. Все атомы со спаренными электронами (терм о) — диамагниты (Не, Ве, Ке и т. д.). Конфигурации внешнего электронного слоя у атомов 2-го и 3-го периодов, стоящих в одних и тех же группах, одинаковы, чем объясняется близость химических свойств элементов, стоящих в одних и тех же группах (сравните Ка иЬ1 в табл. 5). Но наблюдается и различие элементы второго периода обладают постоянной валентностью, а третьего — переменной. Это связано с тем, что у атомов третьего периода есть вакантные -состояния в третьем квантовом слое, а во втором слое таких соединений нет. [c.62]

    Атомы с электронными конфигурациями от пз пр до пз пр включают как металлы, так и неметаллы. Химические свойства элементов этого класса в значительной степени связаны со стремлением атомов получать, отдавать или обобщать электроны таким образом, чтобы приобрести электронную конфигурацию благородного газа с большим или меньшим поря-дковым номером. [c.67]

    Квантовая теория объясняет причину сходства между собой переходных элементов. Дело в том, что основную роль в химических свойствах элементов играют электроны, образующие самую внешнюю оболочку атома. Чем глубже в недрах атома расположена оболочка, в которой происходит изменение электронной конфигурации, тем слабее это сказывается в смысле сдвига индивидуальных особенностей данного элемента с повышением 2. Так, у -элементов, как уже отмечалось, очередные электроны размещаются в атомах ие во внешнем (гг), а на предвнешнем п — 1) слое. Поэтому у элементов -семейства с повышением 2 не наблюдается резкого изменения свойств химические свойства -элементов в пределах данного периода ДОВОЛЬНО/близки между собой. [c.54]

    Энергия ионизации атома (таблица IV- ) и сродство к электрону (таблица 1У-4) являются в известной степени количественными характеристиками химических свойств элементов. Располагая этими данными, можно предвидеть, как будет смещаться облако валентного электрона атома А при взаимодействии его с другим атомом-партне-ром Б направление перемещения электронной плотности по линии связи А — Б Б основном определяется соотношением величин энергии ионизации и сродства к электрону у атомов А и Б. В связи с с этим элементы можно качественно характеризовать как большие или меньшие электронофилы [от греч. рЬ11ео ( филео ) —люблю]. Элементы, отличающиеся сравнительно высокими значениями энергии ионизации и сродства к электрону, более электронофильны, чем элементы с низкими значениями указанных величин. К последним большей частью относятся металлы, к первым — неметаллы. [c.71]

    Химические и спектральные характеристики элементов. Химические свойства элементов так же, как и их спектры, полностью определяются строением внешних электронных уровней. Поэтому имеется большая аналогия между спектром элемента и его химическим поведением. Например, все металлоиды и инертные газы трудновозбудимы, и их последние линии лежат в далеком или вакуумном ультрафиолете. Все металлы возбуладаются легче, их последние линии имеют большую длину волны. [c.41]

    Азот и фосфор являются элементами УА группы периодической системы Д. И. Менделеева. На внешнем энергетическом уровне атомов этих элементов находится пять электронов из них три р-электрона. Поэтому в нормальном состоянии они проявляют валентность, равную трем. Наибольшее изменение в химических свойствах элементов УА группы наблюдается при переходе от азота к фосфору. В атомах азота внешним энергетическим уровнем является второй, содержащий только 5- и р-поду ровни, а подуровень с1 отсутствует. Атомы азота при переходе в возбужденное состояние могут увеличить число непарныхэлектронов максимум до четырех и при этомза счет потери одного электрона. В этом случае образуется электронная конфигурация а азот становится четырехвалентным, как в ионе [ЫН4] . Поэтому азот не проявляет валентности, равной пяти. В атомах фосфора наружным энергетическим уровнем является третий, состоящий из трех подуровней з, р и й. При возбуждении атомов фосфора увеличение числа непарных электронов происходит за счет использования -подуровня с образованием электронной конфигурации поэтому фосфор в отличие от азота может проявлять валентность, равную пяти. Размеры атомов азота и фосфора меньше, а энергия ионизации этих элементов соответственно больше, чем углерода и кремния. В связи с этим азот и фосфор при химических реакциях не теряют электронов и не превращаются в элементарные катионы. Сродство к электрону этих элементов незначительно и поэтому они, как правило, не превращаются и в элементарные анионы. Азот и фосфор образуют соединения как с кислородом, так и с водородом, только с ковалентными связями. Таким образом, азот и фосфор являются неметаллами. Причем свойства неметаллов у них выражены сильнее, чем у углерода и кремния. [c.213]


Смотреть страницы где упоминается термин Электроны и химические свойства элемента: [c.400]    [c.37]    [c.83]    [c.150]   
Основы общей химии Т 1 (1965) -- [ c.78 ]

Основы общей химии том №1 (1965) -- [ c.78 ]




ПОИСК





Смотрите так же термины и статьи:

Элемент химический

Элементы свойства



© 2025 chem21.info Реклама на сайте