Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Элементы химические физические свойства

    ПЕРИОДИЧЕСКАЯ СИСТЕМА ЭЛЕМЕНТОВ Д. И. МЕНДЕЛЕЕВА — естественная система химических элементов, созданная гениальным русским химиком Д. И. Менделеевым. Расположив элементы в последовательности возрастания атомных масс и сгруппировав элементы с аналогичными свойствами, Д. И. Менделеев составил таблицу элементов, закономерности которой теоретически вытекают из сформулированного им периодического закона Физические и химические свойства элементов, проявляющиеся в свойствах простых и сложных тел, ими образуемых, находятся в периодической зависимости от их атомного веса (1869—1871 гг.). Периодический закон и периодическая система элементов Д. И. Менделеева позволяют установить свя ь между всеми химическими элементами, предсказать существование ранее неизвестных элементов и описать их свойства. Как впоследствии стало известно, периодичность в изменении свойств элементов обусловлена числом электронов в атоме, электронной структурой атома, периодически изменяющейся по мере возрастания числа электронов. Число электронов равно положительному заряду атомного ядра это число равно порядковому (атомному) номеру элемента в периодической системе элементов Д. И. Менделеева. Отсюда современная формулировка периодического закона Свойства элементов, а также свойства образованных ими простых и сложных соединений находятся в периодической зависимости от величины зарядов их атомных ядер (2) . Поскольку атомные массы элементов, как правило, возрастают в той же последовательности, что и заряды атомных ядер, современная форма таблицы периодической системы элементов полностью совпадает с менделеевской, где аргон, кобальт, теллур расположены не в порядке возрастания атомной массы, а на основе их химических свойств. Это несоответствие рассматривалось противниками Д. И. Менделеева как недостаток его системы, но, как позже было доказано, закономерность нарушается в связи с изотопным составом элементов, что также предвидел Д. И. Менделеев. Периодический закон и периодическая система элементов [c.188]


    Второй уровень информации относится непосредственно к установлению химического строения основного ядра молекул или отдельных его фрагментов, а также атомных группировок обрамления. В настоящее время проведена детальная оценка основных составляющих элементов, на основании которой некоторые авторы берут на себя смелость предлагать среднестатистические, или гипотетические , модели структуры молекулы асфальтенов [45]. В целом эти представления суммируют большое количество эмпирических данных и параметров, полученных на основе новейших достижений аппаратурного анализа. Однако сейчас пока трудно оценить достаточную и объективную аргументированность той или иной модели с точки зрения учета всей совокупности реальных физико-химических свойств асфальтенов из-за отсутствия встречного синтеза предлагаемых структур и отсутствия оценки физических свойств гипотетических структур на основе расчетных [c.238]

    Кроме химических помех следует считаться с возможностью влияния на результаты анализа таких факторов, как наложение молекулярных полос на линию определяемого элемента смещение равновесия в пламени между атомами и ионами, обусловленное изменением температуры пламени или взаимным влиянием элементов изменение физических свойств раствора — вязкости поверхностного натяжения и др. [c.84]

    Хорошие антикоррозионные качества при перекачке серной кислоты всех концентраций дает сплав такого химического состава 24% N1 20% Сг 3% Мо 3,5% 31 0,07% С (макс.) 48% Ре разных элементов 2%. Физические свойства его приведены в табл. 15. [c.218]

    Разделение. Метод разделения выбирают в зависимости от свойств определяемого соединения и мешающих элементов, а также от того, какой метод анализа предполагается использовать гравиметрический, титриметрический или какой-либо другой. В практике используют химические, физические и физикохимические способы разделения. К химическим относятся главным образом методы осаждения, основанные на различной растворимости веществ, к физическим — отгонка, сублимация, плавление и т. д., к физико-химическим — экстракция, ионный обмен, хроматография и некоторые другие. Более подробно методы разделения будут рассмотрены в дальнейшем. [c.20]

    ТРАНСУРАНОВЫЕ ЭЛЕМЕНТЫ (за-урановые элементы) — радиоактивные химические элементы, расположенные вслед за ураном в конце периодической системы элементов Д. И. Менделеева. Т. э. имеют п. н. 93—103, принадлежат к группе актиноидов. Все изотопы Т. э. обладают периодами полураспада, значительно меньшими, чем возраст Земли, поэтому они отсутствуют в природе и получаются искусственно посредством различных ядерных реакций. Исследование физических свойств Т. э. показало, что они аналоги лантаноидов. Из всех Т. э. наибольшее значение имеет зврц как ядерное топливо, используется в изотопных источниках тока, применяемых для питания радиоаппаратуры на спутниках и др. [c.253]


    Слова, взятые за эпиграф к данной главе, представляют собой первый общий вывод из первой статьи Менделеева о периодическом законе. В них заключена основа всей менделеевской формулировки периодического закона. Вывод был проверен сначала самим Менделеевым на сопоставлении известных ему свойств, во-первых, элементов — их физических свойств (атомных объемов и теплоемкостей) и их химических свойств (предельной валентности по кислороду), а во-вторых, свойств соединений (кислородных, хлористых, металлоорганических), причем прежде всего их физических свойств (молекулярных объемов). [c.107]

    Исходя из сведений, которые мы даем в этом задании, еще раз распределите исследованные элементы на металлы, неметаллы и элементы с промежуточными свойствами. Для металлов характерна блестящая поверхность, они ковкие и проводят электричество (физические свойства). Многие металлы реагируют с кислотами и раствором хлорида меди (II) (химические свойства). Неметаллы обычно на вид тусклые и не проводят электричество (физические свойства). Большинство неметаллов не реагируют с кислотами и раствором хлорида меди(II) (химические свойства). Промежуточные элементы имеют свойства как металлов, так и неметаллов. [c.123]

    Химические и физические свойства элементов-неметаллов также можно объяснить различиями структуры их атомов, ионов или молекул или притяжением между этими частицами. Как мы уже отмечали ранее, необычно вы- [c.131]

    Рассмотрение табл. 7-2 показывает, что Менделееву удалось очень точно предсказать физические и химические свойства недостававшего в его системе эле.мента. Этому элементу отводилось место в периодической таблице под кремнием, 81, и над оловом, 8п. Физические свойства германия представляют собой как раз нечто среднее между свойствами кремния и олова. Для предсказания химических свойств экасилиция Менделеев воспользовался также данными о закономерном изменении свойств в триаде фосфор-мышьяк-сурьма (8Ь), являющейся в периодической таблице правым соседом триады кремний-экасилиций-олово. [c.310]

    Периодичность изменения химических и физических свойств элементов главных подгрупп [c.45]

    Зависимость химических свойств элементов главных подгрупп от их физических свойств [c.47]

    В основном смесеобразование осуществляют с помощью горелок, форсунок и регистров для подачи вторичного воздуха (первичным считается воздух, подаваемый в форсунку для распыления горючего). Смесеобразование в большинстве случаев завершается в рабочей камере печи или в камере горения после выхода горючего и воздуха из форсунки (горелки) и регистра или газовой смеси из горелки. Через форсунку и регистр в камеру горения выбрасывается смесь горючего и окислителя, которая загорается на некотором расстоянии от устья, в том месте, где создаются соответствующие условия для воспламенения — необходимое соотношение смеси горючего и окислителя для протекания химической реакции. Одним из основных элементов при распыливании жидких горючих материалов служит распылитель форсунки, назначением которого является разгон и размельчение жидкости путем создания разрывающейся на нити пленки жидкости нити затем распадаются на капли, движущиеся в заданном направлении. На разрыв жидкости, выбрасываемой из устья распылителя, влияют 1) начальное возмущение потока жидкости внутри распылителя, вызывающее турбулизацию жидкости 2) свойство печной среды, в которую выбрасывается поток 3) физические свойства собственно жидкости. [c.29]

    Все эти газообразные, жидкие и твердые углеводороды в зависимости от строения молекул подразделяются на три основных класса — парафиновые, нафтеновые и ароматические. Значительную часть нефти составляют углеводороды смешанного строения, содержащие структурные элементы всех трех упомянутых классов. Строение молекул углеводородов определяет их химические и физические свойства. [c.233]

    Прежде чем приступить к обсуждению химических свойств галогенов, полезно кратко напомнить их важнейшие физические свойства, собранные в табл. 21.4, где латинской буквой X обозначен любой из галогенов. Отметим, что все приведенные в таблице данные, кроме двух последних строк, относятся к галогенам в атомарном состоянии. Данные в двух последних строках таблицы относятся к двухатомным молекулам Х2 с простой связью между атомами Напомним, что, согласно изложенному в разд. 8.7, ч. 1, двухатомные молекулы являются устойчивой формой существования галогенов в виде свободных элементов. [c.290]

    В обобщенную специальную программу моделирования ХТС входят подпрограмма ввода исходной информации подпрограмма математических моделей элементов системы основная исполнительная подпрограмма подпрограмма массива информации о физико-химических константах и физических свойствах компонентов и смесей подпрограмма оптимизации и прогнозирования возможных технологических режимов подпрограмма обеспечения сходимости вычислительных операций подпрограмма вывода результатов. [c.324]


    В то время как относительное различие в массе изотопов для всех элементов, кроме самых легких, невелико, основные изотопы водорода различаются по массе в два раза. Это обусловливает относительно большее различие их свойств и облегчает их разделение. Влияние различия изотопов более сильно проявляется в физических свойствах, но обусловливает также и некоторое различие химических свойств. Так, при электролизе несколько легче подвергаются разложению молекулы воды, содержащие легкий изотоп, а молекулы, содержащие тяжелый изотоп, постепенно накапливаются в электролитической ванне. Это дает возможность, проводя процесс, многократно полностью разделить изотопы во-п.орода. [c.48]

    Из 110 известных к настоящему времени элементов только 22 относятся к неметаллам, больщинство же элементов — металлы. Металлы отличаются от неметаллов физическими, химическими, механическими свойствами. Особенности этих отличий обусловлены электронным строением простых веществ, вытекающим из числа и типа валентных электронов атомов элементов. [c.318]

    Химические и физические свойства перерабатываемого материала, условия проведения процесса (температурный режим, значения и характер механических нагрузок) определяют выбор конструкционных материалов для изготовления всех элементов машины, контактирующих с суспензией, осадком и фугатом. Ряд параметров, характеризующих свойства суспензии, осадка и фугата, должен быть задай или найден экспериментально, так как эти параметры (например, плотность и вязкость суспензии и фугата, плотность осадка, его влажность, коэффициент трения ножа по осадку, угол естественного откоса осадка и т. д.) необходимы для расчета элементов коиструкции машины. [c.11]

    Для определения неизвестной концентрации элементов в растворах методом эмиссионной фотометрии пламени необходимы эталоны, химический состав и физические свойства растворов которых должны быть как можно ближе к составу и свойствам анализируемых образцов. [c.15]

    Как это характерно для всех элементов второго периода, кислород по своим химическим и физическим свойствам заметно отличается от более тяжелых элементов той же группы (главной подгруппы). (Этот вопрос объясняется в разд. 35.3, посвященном фтору.) Химическое поведение кислорода в значительной степени определяется электронной конфигурацией его атома ls 2s 2p .  [c.469]

    В сплавах внедрения атомы растворенного вещества образуют дополнительные связи с соседними атомами по сравнению с чистым растворителем, а это приводит к тому, что кристаллическая решетка сплава становится тверже, прочнее и менее пластичной. Например, железо, содержащее менее 3% углерода, намного тверже чистого железа и приобретает значительно большую прочность на растяжение, а также другие ценные физические свойства. Так называемые мягкие (малоуглеродистые) стали содержат менее 0,2% углерода они обладают высокой пластичностью и ковкостью и используются для изготовления кабелей, гвоздей и цепей. Средние (углеродистые) стали содержат 0,2-0,6% углерода, они жестче мягких сталей и используются для изготовления балок и рельсов. Высокоуглеродистые стали, применяемые для изготовления нож-нгщ, режущих инструментов и пружин, содержат 0,6-1,5% углерода. При введении в стали других элементов получают различные легированные стали. Одним из наиболее известных сплавов такого типа является нержавеющая сталь, содержащая 0,4% углерода, 18% хрома и 1% никеля. Сплавы типа твердых растворов отличаются от обычных химических соединений тем, что имеют произвольный, а не постоянный состав. Отношение содержания неметаллических элементов к металлическим может варьировать в них в широких пределах, что позволяет придавать этим материалам самые разнообразные физические и химические свойства. [c.364]

    Рассмотрите изменение химических и физических свойств по этой группе элементов. Сравните энергии ионизации для переходов М—>-М и [c.594]

    Установлено, что важнейшие физико-химические и водно-физические свойства почвы — емкость поглощения, гидрофильность, связность, липкость, реакция среды и многие другие — находятся в прямой зависимости от минералогического состава. Теперь известно, что доступность для растений тех или иных питательных элементов в значительной мере зависит от вида минералов, содержащихся в почве, и от степени их дисперсности. [c.37]

    V 21.1. Укажите два химических и два физических свойства, по которым какой-либо неметаллический элемент отличается от металлического. [c.332]

    Характерной особенностью перечисленных элементов является недостроенность их электронных d-оболочек, определяющая химические и многие физические свойства этих элементов. Для этих элементов характерно, что переход электронов из внещних с -оболочек во внешнюю s-оболочку (или наоборот) приводит к возникновению свободных валентностей. Например, для платины переход из считающегося основным состояния 5 i 6s2 3 состояние 5ii 6s приводит к образованию двух свобод ных валентностей (два неспаренных электрона). [c.363]

    Физические и химические свойства простых и сложных веш,еств, образуемых различными элементами, определяются особенностями строения электронных оболочек, а также зарядом и массой ядер атомов этих элементов. Тем не менее исторически разделение элементов на два больших класса — металлы и неметаллы — возникло задолго до того, как было обнаружено сложное строение атома и создана периодическая система элементов. В основу такого разделения были положены довольно отчетливые различия в некоторых физических свойствах простых веш,еств, образуемых различными элементами. [c.106]

    Следует подчеркнуть, что положение этой граничной диагонали и само деление элементов на металлы и неметаллы весьма условны. Целый ряд элементов, обладая характерными физическими свойствами металлов — блеском, высокой электропроводностью, пластичностью, проявляет химические свойства двойственной природы — [c.109]

    Не только химические свойства элементов, но и очень многие физические свойства простых веществ изменяются периодически, если рассматривать их как функции атомной массы. [c.75]

    Углерод в различных некристаллических формах является основным элементом химических, физических и биологических явлений и процессов. Поэтому понятен более вековой интерес к углеродсодержащим шунгитовым породам (шунгитам) Карелии, знаменитым высоким содержание аморфного углерода (по оценкам до 25х 10 тонн). Шунгиты обладают набором физикомеханических и физико-химических свойств, позволивших отнести их к перспективному углеродному сырью. Показана возможность их использования в процессах водоподготовки и водоочистки, в качестве катализатора в кислотных и кислотно-основных реакциях, многофункхщонального наполнителя полимерных композиционных материалов, в процессах выплавки кремнистых чугунов и получения карбида кремния. [c.174]

    Водород образует с другими р-элементами ковалентные соединения, формально не относящиеся к гидридам СН4, NH3, РНз, Н2О, H2S, НС1 и др. По физическим свойствам они при условиях, близких к нормальным, являются газами или легко испаряющимися жидкостями, поэтому иногда называются летучими гидридами. В этих соединениях степень окисления водорода -1-1, а характер химической связи меняется от малополярной ковалентной до полярной ковалентной. [c.344]

    Для развития физической химии огромное значение имели работы Д. И. Менделеева, и прежде всего открытие им периодического закона (1869), который установил связь между химической природой веществ и их физическими свойствами. Периодический закон доказал единство природы различных химических элементов, установил закономерное изменение свойств элементов при возрастании заряда ядра атома. Возрастание заряда ядра атома приводит к качественному изменению — переходу от одного элемента к другому. Переход этот происходит не плавно, а скачкообразно, в чем проявляется диалектический характер зависимости свойств химических элементов от их строения. [c.7]

    Галиды водорода отличаются от галидов других элементов. Они сходны с галидами неметаллических элементов ио физическим свойствам, ио отличаются от них тем, что ио химической природе являются простыми кислотами, т. е. донорами протонов, а следовательно, и галид-иоиов. Эта донорная функция проявляется у них при растворении в воде, а так.тсе ири взаимодействии с галидами неметаллических элементов и с другими соединениями, н1)оявляющимн акцепторные функции. Данные о температурах и- теплотах фазовых превращений различных галоводородов нривсдены в табл. 111,3 Приложения. [c.125]

    Периодический закон Д. И. Менделеева был общепризнан, хотя имелись и некоторые аномалии. Так, согласно периодическому закону, свойства элементов находятся в периодической зависимости от их атомных весов, и поэтому не может быть двух элементов с одинаковым атомным весом и разными химическими) физическими свойствами. Однако это наблюдается у кобальта и никеля порядок расположения по возрастающему атомному весу нарушен для теллура и иода. Д. И. Менделеев предполагал, что атомный вес теллура не верен, но это не подтвердилось, и теллур должен быть помещен в периодической системе до иода, хотя у него атомный вес больше. Кроме того, было неясно положение в периодической системе VIII группы и редкоземельных элементов, а также не нашлось места для инертных газов, открытых в самом конце XIX века. [c.91]

    Помимо этого, соотношения, в которых присутствзгют инородные элементы (сера, кислород, азот и др.), отражаются на процентном соотношении неуглеводородных компонентов в тяжелых фракциях и приводят к дополнительному усложнению. Допуская для простоты, что нефтяные компоненты содержат не более одного инородного атома, следует считать, что с увеличением среднего молекулярного веса фракций действительное процентное содержание неуглеводородных компонентов. Соответствующее определенному содержанию инородных элементов, растет. В такой большой молекуле присутствие инородного атома не оказывает существенного влияния на химические и (или) физические свойства, определяемые преимущественно углеродным характером молекулы, поэтому изучение состава высших фракций очень усложняется вследствие присутствия неуглеводородных соединений. [c.364]

    До сих нор еще нет хорошего объяснения изменений химического состава, которое, возможно, вызывает изменения физических свойств. Известно, как отмечалось ранее, что состав продуктов не многим отличается от состава остатка, что отношение углерода к водороду увеличивается по мере того как вещество делается менее жидким это можно легко объяснить увеличением количества циклических структур в молекуле. Однако, как было показано Химманом и Барнетом (Hillman and Barnett [26]), это увеличение соотношения углерода и водорода наблюдается одновременно с увеличением количества серы, азота и кислорода. Данные табл. XII-3 и ХП-4 показывают, что такое увеличение содержания посторонних элементов встречается во всех изучавшихся случаях, кроме содержания серы в крекинг-остатке. Следует признать, что анализы были сделаны в большей степени на асфальт содержащих остатках, чем на природных асфальтах, но данные все же убедительны. [c.540]

    Предыдущие главы этой книги были посвящены главным образом ознакомлению с такими законами химии, как правила образования химической связи, законы термодинамики, принцип действия электрохимических элементов и т. п. В ходе объяснения этих законов мы описывали химические и физические свойства многих веществ. Таким путем вы познакомились со многими химическими фактами. Однако пока что вам должно быть еще не просто предсказывать химические и физические свойства веществ, основываясь на химических законах и тех отрывочных данных, которые вы узнали. Допустим, например, что в ващих руках оказался закрытый сосуд с надписью фтор . Что вы можете сказать о свойствах вещества, находящегося внутри этого сосуда Газообразное это вещество или мелкокристаллический порошок Обладает оно высокой реакционной способностью или же его можно спокойно открывать на воздухе С веществами какого типа оно скорее всего должно реагировать Вы можете ответить на многие вопросы, основываясь на законах, уже обсуждавшихся в этой книге. Например, можно вспомнить, что, согласно изложенному в гл. 7, ч. 1, фтор существует в виде молекул р2 более того, вы можете заключить, что р2 является газообразным веществом, поскольку его молекулы неполярны и между ними действуют слабые силы притяжения. Если вспомнить, что фтор наиболее электроотрицательный элемент, то следует заключить, что он представляет собой очень сильный окислитель, а следовательно, обладает очень высокой реакционной способностью. Короче говоря, вы уже можете предсказать многие свойства химических веществ. [c.281]

    Основные показатели химического состава нефтяных остатков строго контролируются гостовскими нормативами. При использовании, например, нефтяных остатков в качестве топлив (топочные мазуты) требуется строго выдерживать нормы по следуюпщм показателям отношение С/Н, содержание серы и зольных элементов, а также значения таких физических свойств, как вязкость и температура застывания. В связи с повысившимися требова-нпямп по охране окружающей среды сильно возросли требования к допустимой норме содержания серы в остаточных топливах. [c.242]

    Большое значение релятивистские эффекты имеют для элементов побочных подгрупп. Давно известно, что химические и физические свойства золота сильно отличаются от свойств меди и серебра. Часто такие отличия носят название аномалии Аи . Например, большинство координационных соединений Аи (I) имеет координационное число 2, в то время как Ag (I) и Си (I) имеют тенденцию к большим значениям. Золото имеет значение 1 значительно большее, чем серебро, и связано это с релятивистским сжатием бв-подоболочки. Это объясняет низкз ю восстановительную активность золота, а также существование аурид-иона Аи в таких соединениях, как СзАи или КЬАи. Серебро такие соединения уже не образует. Сжатие валентной 6в-А0 золота также увеличивает прочность и уменьшает длину его связей в соединениях. Вторая энергия ионизации золота Е 2 меньше, чем у серебра, что связано с релятивистским расширением 5 -подоболочки. Поэтому проявление в соединениях золота более высоких степеней окисления, чем у меди и серебра, связано с меньшими энергетическими затратами для участия в этом 5й-электронов. Желтый цвет золота связан с релятивизмом. Вследствие небольшого энергетического различия между сжатым [c.86]

    На химической проекции Системы атомов всс подвиды вида атомов проецируются в точку, что адекватно усреднению их свойств. Это графический образ химического элемента на наглядной модели. В таком "двуличии вида атомов (по генетике — изопротонного ряда) видится глубокий смысл противоречивого развития материи. Хотя мы говорим, что переход от одного уровня строения материи к другому осуществляется скачком, но понимаем, что полного разрыва между ними нет и быть не может. Вид атомов, выступая как элемент физический, представляет предшествующий уровень материи, а выступая как элемент химический — выходит на следую-1ций, более высокий уровень организации материи — химический, Выводит его на этот уровень электронная оболочка атомов. В последующем изложении материала эти две ипостаси вида атомов будут просматриваться четко. [c.142]

    С. М. Драчев, А. С. Разумов, С. Б. Бруевич, Б. А. Скопинцев, М. Т. Голубевг[. Ме тоды химического и бактериологического анализа воды. [Медгиз, 1953, (280 стр В книге описаны наиболее достоверные методы качественного исследования и коли чественного определения физических свойств и химического состава органических и неорганических веществ, растворенных в воде. Значительное место уделено по.1евым методам анализа воды. Помимо анализа воды па обычные компоненты, в книге приведено описание методов определения менее распространенных элементов мышьяка, свинца, меди, цинка, фтора, хрома, селена, [c.491]

    Мы уже неоднократно отмечали, что для элементов группы 8А характерна химическая инертность. До сих пор мы обсуждали главным образом физические свойства этих элементов, как, например, при изучении межмолекулярных сил в разд. 11.5, ч. 1. Согласно теории химической связи Льюиса, высокая инертность благородных газов обусловлена наличием в валентной оболочке их атомов полного октета электронов. Устойчивость такой валентной э [ектронной оболочки проявляется в высоких энергиях ионизации элементов группы 8А (см. разд. 6.5, ч. 1). [c.286]

    Необходимо различать понятия химический элемент и простое вещество . Химический элемент — общее понятие об атомах с одинаковыми химическими свойствами и зарядом ядра. Физических свойств, характерных для простого вещества, химическому элементу приписать нельзя. Простое в-ещест-во —это форма существования элемента в свободном состоянии. Один и тот же элемент может образовывать несколько простых веществ. [c.7]


Смотреть страницы где упоминается термин Элементы химические физические свойства: [c.116]    [c.362]    [c.30]    [c.347]    [c.267]    [c.97]    [c.68]   
Краткий справочник химика Издание 6 (1963) -- [ c.36 , c.39 , c.285 , c.292 , c.294 , c.298 ]

Краткий справочник химика Издание 4 (1955) -- [ c.31 , c.34 , c.237 ]




ПОИСК





Смотрите так же термины и статьи:

Физические н химические свойства

Элемент химический

Элементы свойства



© 2024 chem21.info Реклама на сайте