Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хлориды подгруппы хрома

    Глава 17 ХЛОРИДЫ ПОДГРУППЫ ХРОМА [c.348]

    Известны попытки электролитического выделения металлов подгруппы хрома из неводных растворов. Например, в работе [1961 хромовые покрытия были получены путем электролиза растворов хлорида хрома в формамиде, ацетамиде, в смеси мочевины и аце-тамида. Оптимальная плотность тока составляет 5 А/дм , Описано также вы-.целение хрома при электролизе растворов его солей в ацетамиде, анилине, ацетоне, пиридине, этаноламине, хлористом бензиле и уксусной кислоте. [c.107]


    Критерием для разделения катионов 3-й группы на подгруппы является отношение их к действию аммиака в присутствии хлорида аммония, подавляющего диссоциацию основания. При этих условиях превышенными оказываются только произведения растворимости гидроксидов алюминия, хрома(1И) и железа(1И), которые и выпадают в осадок. Другие катионы 3-й группы остаются в растворе. Поэтому [c.138]

    Групповым реагентом является водный нейтральный шш слабо Щ4> лочной (pH = 7—9) раствор сульфида аммония (№4)28 (в присутствии аммиака и хлорида аммония), который осаждает из водных растворов катионы алюминия и хрома (а также титана) в виде гидроксидов AKOH13 и Сг(ОН)з, а остальные катионы — в виде сульфидов Мп8, FeS, Fe S , С08, Ni8, ZnS. В соответствии с этим катионы третьей аналитической группы, перечисленные в табл. 11.1, разделяют на две подгруппы. К пер- [c.293]

    Катионы 3-й аналитической группы осаждаются в щелочной среде сульфидом аммония при pH 9 в присутствии буферного раствора — смеси гидроокиси и хлорида аммония. 3-ю группу делят на две подгруппы 1) подгруппу катионов, образующих гидроокиси, и 2) подгруппу катионов, образующих сульфиды. Гидроокиси металлов получаются из сульфидов в том случае, когда растворимость гидроокиси меньше, чем растворимость сульфида данного металла. В подгруппе катионов, образующих гидроокиси, ясно заметно влияние диагонального направления в системе Менделеева. По диагоналям расположены элементы, выделяющиеся в этих условиях в виде гидроокисей а) бериллия, алюминия, титана, ниобия б) скандия, циркония, тантала, урана (VI) в) иттрия, гафния, лантана, тория вследствие сходства в свойствах с лантаном и актинием вместе с гидроокисями указанных металлов выпадают также все лантаноиды и актиноиды. Может выпасть и гидроокись магния в отсутствие иона ЫН . Выпадение в этой же подгруппе гидроокиси хрома, Сг(ОН)з, объясняется существованием электронной конфигурации. .. ёЧзК По этой же причине медь с электронной конфигурацией. .. За 1"451 попадает не в 3-ю, а в 4-ю аналитическую группу, образуя сульфид Сы5, не растворимый в кислой среде. Появление внешнего подуровня наблюдается через четыре элемента калий 5, кальций скандий s титан s ванадий хром 5 марганец s железо s кобальт 5% никель 5% медь цинк 5 Поведение ионов ванадия и марганца отличается от поведения хрома, поведение никеля и цинка — от поведения меди. [c.28]

    Присутствующие в анализируемом растворе катионы, осажденные в виде сульфидов, делят затем на подгруппы соответствующими реагентами. Наиболее часто применяют для этого щелочь в сочетании с Н2О2. Окисляя перекисью водорода, переводят хром (III) в Сг (VI), что предупреждает образование малорастворимых Мп(СгОз)2 и Zn( rOa)2. Если вместо щелочи действовать аммиаком и хлоридом аммония, то алюминий, хром и железо осаждаются и в избытке аммонийных солей растворяются марганец (II), железо (II), кобальт (II), никель (II), цинк. [c.207]


    Наиболее широко были изучены процессы карбидообразова-ния при электроискровом разрушении металлов подгрупп титана, ванадия и хрома, а таюке семейства железа в углеродсодержащих жидких диэлектриках. Полученные в искровых разрядах продукты характеризуются высокой дисперсностью. Например, диспергируя ферромагнитные металлы в углеводородах при мягком режиме искрового разряда, удалось получить ферро-магнетизированную сажу , которая широко используется для извлечения благородн лх металлов. Полученные в низковольтном разряде дисперсные металлы (например, цирконий) настолько йктивны, что самопроизвольно возгораются при 150—170°С. Помимо карбидов, низковольтный разряд широко используется для получения хлоридних продуктов в среде четыреххлористого углерода. В отличие от обычного высокотемпературного хлорирования хлорирование в разряде приводит к одновременному образованию всех известных хлоридов данного металла. [c.98]

    Особую трудность представляет определение хрома в металлах подгрупп титана и ванадия из-за близости летучести их хлоридов [419]. С целью увеличения разницы в летучестях микропримесей и матрицы исследуемые металлы предварительно прокаливают на воздухе для перевода их в труднолетучие окислы. 1Три анализе карбонатов и сульфатов марганца соли прокаливают до МП3О4 [61]. Благодаря близости летучестей окислов марганца и хрома и их смесей с угольным порошком [491] селективное фракционирование этих элементов в процессе испарения отсутствует. Предел обнаружения хрома равен 8-10 %. Однако и в этом случае для хрома не достигается полное отделение от основы. Так, выход хрома в плазму при анализе УаОз и УаОд достигает только 50% [419]. [c.81]

    Галлий. Обе рекомендуемые реакции не очень чувствительны. Реакция Б с хлоридом марганца, броматом калия и ферроцианидом калия (стр. 141) дает возможность открывать галлий в присутствии элементов, которые чаще всего ему сопутствуют (А1, 1п, 2п, Мп) заслуживает внимания то, что посредством этой реакции можно отличить галлий от алюминия. Для обнаружения галлия в присутствии железа всегда следует пользоваться реакцией А с хлоридом церия и бисульфатом калия (стр. 141). Единственным элементом в рассматриваемой аналитической подгруппе, мешаюпшм открытию галлия в обеих реакциях, является хром. [c.173]

    Гидроокиси Ре(ОН)г, Ге(ОН)з и Мп(ОН)з обладают слабо основными свойствами, а гидроокиси А1(0Н)з, Сг(ОН)з и Zn(0H)2 — амфотерными свойствами, что используется в качественном анализе для разделения катионов И1 группы на две подгруппы. К первой подгруппе относят катионы Ре +, Fe +.Mn , ко второй — катионы А1 +, Сг= +, Zn +. Если к раствору смеси катионов П1 группы прибавить в избытке раствор щелочи, то катионы первой подгруппы выпадут в осадок в виде гидроксидов Ге(ОН)г, Ре(ОН)з, Мп(ОН)2, а в растворе будут находиться ионы АЮ ", СгО " и ZnO . На практике избыток раствора щелочи добавляют в присутствии окислителя Н2О2 или Вгз. Это необходимо для того, чтобы перевести хромит-ион rOj в хромат-ион СгО -. Последующим действием раствора хлорида бария легко отделить ион СгО от ионов АЮ и ZnO ". В присутствии окислителя ионы железа (II) переходят в ионы железа (III)  [c.272]

    Вторую группу летучих веществ, перспективных для получения элементов особой чистоты, составляют летучие галиды. Га-лидный метод состоит в термическом разложении или восстановлении водородом галидов особой чистоты, главным образом хлоридов. Продуктами реакции являются нелетучий металл и хлор или хлористый водород, которые легко удаляются из сферы реакции. Получение элементов особой чистоты нутем восстановления или термораспада их хлоридов имеет пока еще весьма ограниченное применение, что объясняется трудностями, возникающими при глубокой очистке галидов. Возможности галидного метода в настоящее время используются еще далеко не в полной мере. Но если даже и будут использованы все возможности этого метода, задача получения элементов особой чистоты через летучие соединения не будет полностью решена, так как галидный метод, так же как и гидридный, применим к ограниченному числу элементов. Многие элементы не дают летучих галидов, как, например, хром, щелочноземельные металлы, редкоземельные элементы. Галиды ряда элементов не восстанавливаются водородом даже при значительных температурах, как, например, галиды элементов подгруппы титана. Поэтому в последние годы возрос интерес к получению элементов особой чистоты через МОС. [c.4]

    Ванадий рассматривали как аналог хрома до 1867 г., когда английский химик Роско показал, что этот элемент обладает свойствами, общими с элементами подгруппы фосфора. Впервые металлический ванадий 98—99%-ной чистоты получили Руфф и Мартин путем металлотермического восстановления V2О3 в тигле из MgO. Ванадий 99,3—99,8%-ной чистоты был получен в 1927 г. Марденом и Риком путем восстановления пятиокиси ванадия металлическим кальцием в присутствии хлорида кальция. В 1934 г. Деринг получил порошкообразный чистый ванадий (но процессу, описанному в 1870 г. Роско) нагреванием трихлорида ванадия в токе водорода. [c.142]


    Критерием для разделения катионов З-й группы на подгруппы является отношение их к действию ЫН40Н в присутствии хлорида аммония, подавляющего диссоциацию основания. При этих условиях превышенными оказываются только произведения растворимости гидроокисей алюминия, хрома и железа А1(0Н)з, Сг(ОН)з и Ре(ОН)з, которые и выпадают в осадок. Другие катионы З-й группы остаются в растворе. Поэтому 3-ю группу подразделяют следующим образом 1-я подгруппа — А1 +, Сг +, Ре " , осаждаемые ЫН40Н в присутствии солей аммония 2-я подгруппа — Ре " , Zn , Со " , N 2+, которые не осаждаются таким способом. [c.133]

    Д. И. Менделеев в своем окончательном варианте периодической системы элементов поместил уран в VI группу седьмого периода — в подгруппу вольфрама. Это значит, что по химическим сво11ствам уран должен быть аналогом хрома, молибдена и особенно вольфрама. Действительно, уран обладает многими свойствами элементов этой подгруппы. Аналогия особенно ярко сказывается в свойствах окислов, кислот, хлоридов, карбидов, урапатов, вольфраматов и других соединений. [c.13]


Смотреть страницы где упоминается термин Хлориды подгруппы хрома: [c.374]    [c.344]    [c.62]    [c.370]    [c.370]    [c.293]   
Смотреть главы в:

Неорганические хлориды -> Хлориды подгруппы хрома




ПОИСК





Смотрите так же термины и статьи:

Хрома подгруппа

Хромила хлорид



© 2025 chem21.info Реклама на сайте