Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ванадий в металлическом вольфраме

    Определение вольфрама основано на выделении его из раствора навески в виде растворимой в кислотах вольфрамовой кислоты Н2 У 04-Н20 желтого цвета при этом вольфрам одновременно отделяется от большинства сопутствующих компонентов. Образование осадка вольфрамовой кислоты происходит в результате окисления карбидного и металлического вольфрама действием азотной кислоты. Вольфрам обычно не весь выделяется в осадок, небольшая часть его остается в растворе. При очень точных анализах в фильтрате оставшуюся часть вольфрама снова выделяют в осадок с помощью коагулятора (желатины) или осаждают алкалоидом (цинхонином). Осадок вольфрамовой кислоты способен соосаждать примеси из раствора (кремниевую кислоту, железо, фосфор, хром, ванадий, молибден, ниобий и др.), поэтому титриметрический и фотометрический методы имеют определенные преимущества, так как загрязнения здесь существенного влияния не оказывают, как это происходит в гравиметрическом методе. [c.343]


    Заполнение 4/ -оболочки оказывает весьма существенное влияние на строение электронных оболочек, атомные радиусы и физико-химические свойства металлов, следующих за лантаноидами (гафний, тантал, рений, вольфрам и т. д.), т. е. лантаноидное сжатие проявляется и за лантаноидами. Действительно, оно приводит, например, к тому, что металлический и ионный радиусы, возрастающие от титана к цирконию, от ванадия к ниобию и от хрома к молибдену, почти не изменяются при переходе к гафнию, танталу, вольфраму. Точно так же почти не увеличиваются металлические радиусы и ионные радиусы, отвечающие высшим валентным состояниям, при переходе от элементов ряда технеций—палладий к их аналогам рению—платине соответственно. Именно лантаноидное сжатие, происходящее в результате заполнения 4/ -оболочки, приводит к сближению свойств 5d- и 4с -переходных металлов, резко отличающихся по свойствам от более легких Зй-переходных металлов. Оно проявляется и на теплотах образования ионных соединений этих металлов и других химических характеристиках (см. главу II). Лантаноидное сжатие, а также заполнение 5й -оболочки, заканчивающееся у платины—золота, приводит к дополнительному сжатию внешних оболочек у последующих элементов ряда золото—радон, что отражается на возрастании ионизационных потенциалов последующих элементов. Вследствие этого потенциалы ионизации франция, радия, актиния оказываются соответственно выше потенциалов ионизации цезия, бария и лантана (см. рис. 6). В результате этого первые более тяжелые элементы оказываются менее электроположительными, чем последние. Сжатие внешних оболочек вследствие заполнения внутренних Af - и 5й -оболочек приводит к повышению энергии связи внешних электронов актиноидов по сравнению с их аналогами — лантаноидами. На это указывают данные, правда, пока довольно ограниченные по их потенциалам ионизации и имеющиеся уже более подробные сведения об их атомных радиусах (см. главу III). [c.51]

    При повышенных температурах и давлениях водород диффундирует в металлы. Наибольшее количество водорода поглощает палладий, который не только адсорбирует, но и растворяет Нз. В палладий водород проникает уже при 240° С, диффузия водорода в мягкое железо значительна при 40—50 ат и температуре около 400° С. Поглощение водорода многими металлами (Ре, Со, N1 и др.) увеличивается с повышением температуры и давления. При охлаждении металла и снижении давления большая часть поглощенного водорода выделяется. При сверхвысоких давлениях сталь заметно поглощает водород даже при комнатной температуре. Количество адсорбируемого водорода зависит от структуры поверхности металла. Металлический порошок поглощает водорода больше, чем сплавленный, вальцованный или кованый металл. При поглощении водорода могут изменяться твердость, термическая стойкость, текучесть, электропроводность, магнитные и другие свойства металлов и сплавов. Для уменьшения диффузии водорода в металлы при повышенных давлениях и температурах обычно применяют легированные стали, содержащие хром, молибден, ванадий, вольфрам и другие легирующие металлы. [c.19]


    Отложения с наружной стороны низкотемпературных поверхностей нагрева мазутных парогенераторов, например с пластин регенеративных воздухоподогревателей, с трубок водяных экономайзеров, содержат сернокислые соли железа, никеля, ванадия, меди и свободную серную кислоту. Коррозионные образования в трубках пароперегревателей кроме окислов железа содержат хром, марганец, молибден и другие вещества. Эти материалы отличаются исключительной стойкостью, и обычно их удается перевести в раствор лишь нагреванием в смеси серной и фосфорной кислот. Сплавление с содой, едкими щелочами, пирофосфатом или гексаметафосфатом натрня практически не приводит к разложению этого материала. Отложения из парогенераторов высокого давления содержат в различных соотношениях окислы железа и алюминия, кремниевую кислоту, фосфаты железа, алюминия и кальция, металлическую медь, а иногда соединения цинка и магния. В качестве менее существенных примесей, а иногда и следов в накипи присутствуют марганец, хром, олово, свинец, никель, молибден, титан, вольфрам, стронций, барий, сурьма, бор, ванадий и некоторые другие элементы. При обычном анализе ограничиваются определением фосфатов, кремниевой кислоты, железа, меди, алюминия, натрия, кальция, магния и сульфатов. [c.411]

    Методом перманганатометрии путем прямого титрования можно определять различные восстановители олово (II), железо (II), молибден (III), вольфрам (IV), ванадий (IV), перекись водорода, сурьму (III), нитриты, оксалаты и др. Если определяемые элементы имеют более высокую степень окисления, их можно предварительно восстановить. Для восстановления ионов железа (III) часто пользуются редуктором Джонса, представляющим собой стеклянную трубку с краном (типа бюретки), наполненную гранулами металлического цинка. В присутствии раствора серной кислоты в редукторе Джонса образуется водород, который в момент выделения восстанавливает ионы железа (III) в ионы железа (II). [c.164]

    Двуокись тория. . . Металлический ванадий Металлический хром. Металлический молибден Молибдат аммония. . Металлический вольфрам [c.138]

    Результат титрования при анализе стандартного образца № 38 ферросилиция свидетельствует о том, что около 2/з кремния перешло в раствор в виде 51 +. Металлические медь, алюминий, ванадий, молибден, вольфрам, марганец кобальт и никель в результате взаимодействия с 0,25-н. раствором хлорного железа переходят соответственно в Сц2+, АР+, У +, Мо +, / + Мп2+, С02+ и N 2+. Аналогично происходит взаимодействие этих металлов с раствором хлорного железа, если эти металлы входят в состав сплавов на основе железа. При взаимодействии металлического алюминия и марганца с раствором хлорного железа частично выделяется водород. Титан, цирконий, кремний, фосфор и хром, содержащиеся в некоторых сплавах на основе железа, переходят соответственно в Т1 +, 2г +, 51 +, Р + и Сг + ниобий, вероятно, переходит в N5 +. Углерод, входящий в состав сплавов на основе железа, пе реагирует с раствором хлорного железа. [c.99]

    При анализе образцов металлического плутония сильно влияло железо, содержание которого составляло 0,02—0,08%. Так как железо титруется вместе с плутонием, то определение его следует проводить другим подходящим методом. В данной работе железо определяли фотометрически. Определению мешают хром, титан, молибден, вольфрам, уран и ванадий. Нитрат-ионы мешают определению за счет их восстановления в редукторе. При отделении плутония от примесей необходимо учитывать полноту выделения. [c.183]

    Среди металлических материалов исключительное полол<ение занимают сплавы на основе железа. Сплавы железа с содержанием углерода до 2% принято называть сталью, а свыше 2% — чугуном. Используемые в настоящее время в промышленности стали обычно делят на углеродистые и легированные. Создание новых н интенсификация существующих промышленных процессов заставляет все больше использовать легированные стали, которые обладают повышенной коррозионной стойкостью. Массовая доля средне- и высоколегированных сталей в настоящее время составляет почти 20% от общего количества производимых промышленностью черных металлов. Для легирования используют такие элементы, как никель, хром, молибден, вольфрам, ванадий, кобальт, марганец, медь, титан, алюминий. Сплавы железа с хромом составляют основу нержавеющих сталей, среди которых [c.136]

    Ряд патентов, принадлежащих фирме Дюпон , посвящены полимеризации и сополимеризации этилена [131], пропилена 1132], различных диенов [133] и бицикло-(2,2,1)-гептена-2 [102, 103, 110] на координационных катализаторах Циглера. В этих патентах описаны соответствующие катализаторы, состоящие из соединений одного или более элементов, таких, как титан, цирконий, церий, ванадий, ниобий, тантал, хром, молибден или вольфрам, причем по крайней мере часть металла имеет валентность, равную 3 и ниже (преимущественно 2), или связана с достаточным количеством восстановителя, способного восстанавливать многовалентный металл до низшей валентности. Подходящими восстановителями могут служить реактивы Гриньяра, алкилы или арилы металлов, металлический цинк и металлы, расположенные в ряду напряжений выше цинка, а также гидриды металлов. [c.103]


    В 1912 году о кобальте писали До настоящего времени металлический кобальт с точки зрения потребления не представляет интереса. Были попытки ввести кобальт в железо и приготовить специальные стали, но последние не нашли еще никакого применения . Действительно, в начале нашего века первые попытки использовать кобальт в металлургии были неудачными. Было известно, что хром, вольфрам, ванадий придают стали высокую твердость и износоустойчивость при повышенных температурах. Сначала создалось впечатление, что кобальт для этой цели не годится — сталь плохо закаливалась, точнее, закалка проникала в изделие на очень небольшую глубину. Вольфрам, хром и ванадий, соединяясь с растворенным в стали углеродом, образуют твердые карбиды, кобальт же, как оказалось, способствует выделению углерода в виде графита. Сталь при этом обогащается несвязанным углеродом и становится хрупкой. В дальнейшем это осложнение было устранено добавка в кобальтовую сталь небольшого количества хрома предотвращает графитизацию такая сталь хорошо закаляется. [c.36]

    Определению мешают по механизму (б) — золото (1П) Ф = 1,1), рений (VII) (3000) и ртуть по механизму (в ) — серебро, хром (VI), вольфрам, ванадий, анион NO3. Обработка растворов металлической медью (цементация), предусмотренная прописью определения, устраняет мешающее влияние до 100—200 жкг золота и до 10—20 жг ртути и серебра. Присутствие в растворе 1 г железа, меди или молибдена не влияет на результаты определения. [c.206]

    Следовательно, нужно и другие свойства выбрать из тех, которые-принадлежат элементам. Таких свойств немного, но они есть. Например, всякий понимает, что натрий, хлор и другие обладают совокупностью свойств как элементы, не рассуждая о том, какими свойствами обладают они в свободном состоянии (например, фтор мы не знаем в свободном состоянии). Очевидно, свойства совсем иные у металлического натрия и у галоидного хлора, а если мы возьмем мышьяк или кремний или что-нибудь подобное, то, очевидно, что у него совокупность свойств не такая, как у натрия или хлора. Это не есть щелочной или галоидный элемент, но элемент со своеобразным характером, промежуточным между характером галоида и металла. Сложность свойств подобных элементов совершенно ясно-рисуется при знакомстве в химии с соединениями данного элемента, но измерять эти свойства нельзя. Они не подлежат измерению,, и их должно познавать наощупь. Только те области знаний перешли в известную ступень понимания, которые можно каким-либо-образом измерить. И вот то химическое различие металлических и галоидных свойств, которое служит характеристикой свойств элементов, находится в той стадии понимания, когда мы ясно его ощущаем, но не можем измерить, т. е.) не можем его выразить каким-либо числом. Хотя эти свойства принадлежат коренным свойствам элементов, но они ускользают от измерения, а потому не могут служить для выражения законностей. Вот если мы остановимся на других свойствах, подлежащих измерению, какова способность элементов вступать в соединения, то здесь мы находимся в области таких явлений, которые имеют коренное значение, а с другой стороны, подлежат измерению. Вы уже из экспериментального курса химии знаете, что элементы входят в соединения. В этом отношении достаточно того, что калий, натрий, серебро представляют элементы, которые вступают в соединения с 1 атомом хлора, а кальций, барий и другие — с 2 атомами железо, золото и т. д. — с тремя, а, например, углерод, кремний, цирконий и олово — с четырьмя. Есть и такие, как ванадий, фосфор, которые соединяются с 5 атомами хлора, а вольфрам и молибден — [c.252]

    Никель, хром, молибден, ванадий, вольфрам способствуют образованию перлитной структуры основной металлической массы, размельчению графита и тем самым повышают прочность чугуна. [c.99]

    В качестве восстановителя применяют раствор хлорида олова (II) в фосфорной кислоте [67]. При определении серы в сульфатах бария, магния, цинка, натрия [63, 68], а также при анализе сульфидных руд, тиосульфата и других серусодержащих материалов [69] раствор хлорида олова(П) и.фосфорной кислоты предварительно нагревают до удаления хлористого водорода. Восстановление этой смесью детально изучено, и усовершенствован способ приготовления реагента для восстановления [70]. Для восстановления серы рекомендовано также применять металлические титан, хром, молибден, ванадий или вольфрам в присутствии фосфорных кислот и их солей [71]. Чаще других металлов рекомендуется применение металлического хрома в присутствии фосфорной кислоты, этот восстановитель применен для определения серы в феррохроме, металлическом хроме [14] и хлориде титана (IV) [72]. Широко распространен метод восстановления серы смесями иодистоводород-ной и фосфорноватистой кислот [73], иодистоводородной кислоты и гипофосфита натрия в присутствии, уксусной [64], муравьиной [74] и хлористоводородной [75—77] кислот. Кроме того, рекомендована смесь иодистоводородной и муравьиной кислот и красного фосфора [78], а также смесь сульфата титана (111) и фосфорной кислоты [79]. [c.214]

    Переходные металлы IV—VI групп — титан, цирконий, гафний, ванадий, ниобий, тантал и при высоких температурах хром, молибден и вольфрам — образуют монокарбиды типа Na l с металлической проводимостью. Это объясняется передачей четырех электронов от атома металла к атому углерода и переходом остальных валентных электронов металла в свободное состояние. Ионы металла и углерода приобретают внешнюю конфигурацию р , которая и обусловливает структуру типа Na l. Металлическая проводимость карбидов Ti , Zr и Hf обусловлена тем, что эти карбиды представляют дефектные твердые растворы с дефицитом углерода, т. е. с избытком атомов металла. [c.184]

    Растворы реагента в 7 -ном водном растворе этанола имеют максимум светопоглощения при 468 нм соединение с У(У1) максимально поглощает при 475 и 560 нм, молярный коэффициент погашения 2,55-10, оптимальный интервал кислотности pH 0,5—3. Отношение компонентов 1 1, константа образования 5.5-10 . Реагент применен [330] для фотометрического определения вольфрама в ванадии металлическом, УаОз и КН4УОз. Предварительно вольфрам и другие элементы экстрагируют в виде бенз-гидроксаматов смесью изобутанола с хлороформом (1 1) из растворов, содержащих аскорбиновую кислоту для восстановления У(У). После отделения, озоления экстрактов, сплавления и переведения в раствор маскируют Зп, Мо и Ге тиогликолевой кислотой, а Т1, КЬ, Та и ЗЬ — фторидом аммония. Определению 2—9 мкг У не мешают по 100 мкг Зп, Т1, Ът, ТЬ, В1, 1п 20 мкг КЬ 40 мкг Та 10 мкг Мо 500 мкг ЗЬ. Мешают Се и Са. [c.134]

    Элементы Сг, Мо и XV имеют высокие температуры плавления и кипения и являются твердыми металлами. Они относительно инертны к коррозии благодаря покрывающей их поверхность прочной оксидной пленке, которая защищает расположенный под ней металл. Тонкий слой СГ2О3 на поверхности металлического хрома делает хромовые покрытия эффективным средством защиты для менее устойчивых металлов, таких, как железо. Наряду с V эти три металла используются главным образом в качестве легирующих добавок в сталях. Ванадий придает стали ковкость, а также сопротивляемость статическим и ударным нагрузкам. Хром позволяет получать нержавеющие стали, стойкие к коррозии, молибден упрочняет сталь, а вольфрам используется для изготовления инструментальных сталей, сохраняющих твердость даже при нагреве до красного каления. [c.443]

    Хлорная кислота в горячем состоянии обладает сильными окислительными, а также водоотнимающими свойствами. При выпаривании хром (111) окисляется до хромовой кислоты вольфрам — до вольфрамовой кислоты, ванадий — до ванадиевого ангидрида УаОб, графит — до диоксида углерода СО2. Кремневая кислота, пентаксиды ниобия и тантала практически полностью выделяются из раствора. Хлорная кислота не мешает титрованию раствором перманганата. Ее широко применяют при анализах металлического хрома и хромовых сплавов для удаления хрома в виде хлористого хромила СгОаСЬ, а также при анализе ферровольфрама и феррониобия. [c.321]

    КЕРАМИКО - МЕТАЛЛИЧЕСКИЕ МАТЕРИАЛЫ, керметы — материалы, представляющие собой гетерогенные композиции одной или нескольких керамических фаз с металлами класс композиционных материалов. Обладают улучшенными св-вами, не присупщми исходным компонентам. Впервые предложены (1922) в Германии как твердые сплавы. Композиции, в к-рых керамическая фаза улучшает св-ва металла, относятся к дисперсноупрочненным материалам (инфракерметы), соответственно керамика с металлом является улучшенной керамикой (ульт-ракерметы). В К.-м. м. в качестве керамической фазы чаще всего иснользуют окислы, карбиды, бориды и нитриды тугоплавких металлов, в качестве металлической фазы — металлы группы железа или тугоплавкие металлы — ванадий, хром, молибден, вольфрам, ниобий и тантал. Компоненты К.-м. м. должны удовлетворять спец. требованиям в отношении хим. стабильности, термической совместимости и возможности образования связи на границе фаз. Требование относительно хим. стабильности определяет такое сочетание [c.565]

    S hultz и Eisenste ken осущ ествляли реакцию углеводородных газов- с водяным паром при 1000° в карборундовой трубке, применяя катализаторы, содержавшие железо, кобальт, никель, хром, алюминий, марганец, медь, ванадий, вольфрам или их оплавы. Теплота, необходимая для реакции, создавалась при помощи индукционного высокочастотного электрического тока. Катализатор или же имеющие подходящую форму металлические массы, воспринимающие. электрическую энергию, помещались в реакционной зоне.  [c.320]

    Со многими металлами, имеющими изоморфную кристаллическую структуру, размер атомов, близкий к размеру атома тантала, а также близко расположенными к нему в ряду электроотрицательностн, таитал образует непрерывные твердые растворы. К этим металлам, в частности, относятся ниобий, вольфрам, молибден, ванадий, Р-титан и др. Ограниченные твердые растворы и металлические соединения тантал образует с алюминием, бериллием, золотом, кремнием, никелем, т. е. металлами, которые значительно отличаются по размерам атомов и электроотрицательностн С литием, калием, натрием, магнием и некоторыми другими элементами тантал практически не образует ни твердых растворов, ни соединений. [c.335]

    Для ванадия известно несколько степеней окисления. Для титрования ванадия(II) в модельных растворах и искусственных смесях предложено использовать электрогенерированное железо(III) с биамперометрической индикацией к. т. т. После растворения пробы амальгамой цинка восстанавливают ванадий(У) и (IV) до V" и титруют его железом(1П) на фоне серной кислоты при pH > 1 [474]. Разработаны методики определения и V в смесях ионов марганца, хрома и ванадия [475], сталях, содержащих молибден и вольфрам [476, 477], и в сплавах [478, 480—482]. Для индикации к. т. т. предложены потенциометрический и биамперометрический методы. Электрогенерированные титранты из металлоактивных электродов — металлического ванадия, олова, меди и хрома —применены для определения ванадия в инструментальных сталях, сплавах, хромитовых рудах [483, 484—490, 497], латунях, бронзах [494— 497], металлическом цинке [497—499]. [c.75]

    Хорошим критерием чистоты металла является примесная проводимость, которую при низких температурах можно измерить непосредственно в виде остаточного сопротивления. По его величине можно судить о том, что еше очень мало металлов получено в очень чистом состоянии. Это относится именно к тем металлам, для которых есть очень хорошие методы очистки, т. е. электролиз для легкоплавких металлов или же высокотемпературная обработка для тугоплавких. Таким является вольфрам, который можно получить термической диссоциацией хлорида. Напротив, титан и цирконий показывают еше очень большую величину остаточного сопротивления, даже когда они получены из иодидов. Иодидный метод особенно эффективен, если речь идет об удалении таких неметаллических примесей, как кислород, азот и углерод. Часто не замечали того, что этот метод малоэффективен для металлических примесей — в большинстве случаев они также переходят из иода в иодид и поэтому попадают в очишенный образец. Поразительные изменения, происходяшие при удалении кислорода из титана и циркония, привели к тому, что часто переоценивают влияние кислорода на свойства. С другой стороны, остаточные сопротивления могут дать и заниженные данные о чистоте, потому что при подготовке образца для измерения легко снова внести небольшие количества кислорода. Это наблюдалось Фастом в случае титана и циркония, а также следует из данных Уайта и Вудса для ванадия, когда после прокаливания в вакууме остаточное сопротивление увеличилось [6]. [c.347]

    При анализе сплавов хром—вольфрам, хром—мо.шбден и хром— вольфрам — ванадий поступают, как описано в пунктах 1—7. Затем содержимое стакана выпаривают до объема 2—3 мл, разбавляют водой до 20 мл и далее выполняют анализ по методике Колориметрическое определение фосфора в металлическом вольфраме и ферровольфраме , стр. 571, начиная с пункта 4. [c.560]


Смотреть страницы где упоминается термин Ванадий в металлическом вольфраме: [c.538]    [c.180]    [c.481]    [c.691]    [c.743]    [c.764]    [c.333]    [c.561]    [c.635]   
Химико-технические методы исследования (0) -- [ c.538 ]




ПОИСК





Смотрите так же термины и статьи:

Вольфрам в металлическом вольфраме

Металлический вольфрам



© 2025 chem21.info Реклама на сайте