Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ОСНОВЫ ИОНООБМЕННОГО СИНТЕЗА Иониты и их свойства

    Принцип ионного обмена и терминология. При контакте с растворами электролитов некоторые твердые вещества способны обмениваться ионами с раствором. Для осуществления ионного обмена необходимо, чтобы среда обеспечивала диссоциацию растворенных веществ. Способность к обмену ионов обнаружена у очень многих природных неорганических и органических веществ. Их изучение послужило основой для синтеза веществ, обладающих ионообменными свойствами. [c.19]


    Из искусственных смол были получены сорбенты, пригодные для обмена анионами с растворами электролитов, что позволило осуществить опреснение или полное обессоливание воды методом ионного обмена, применить простой и экономически более выгодный метод очистки сахаристых веществ, производить извлечение фенола из сточных вод и решить другие аналогичные вопросы. Использование смол в качестве основы для синтеза ионообменных сорбентов позволило изменять свойства этих веществ, что обеспечило возможность их применения в разнообразных отраслях промышленности. [c.101]

    Молекулярные сорбенты, такие как активированный уголь, силикагель, окись алюминия и другие, не обладают высокой специфичностью и, как правило, не могут быть использованы для избирательной сорбции. В отличие от этого иониты, особенно ионообменные смолы, обладают высокой специфичностью сорбции и, что особенно важно, могут быть синтезированы с наперед заданными свойствами. Простейшим примером избирательной сорбции в колонке на ионитах может служить разделение веществ с кислотными и основными свойствами — поглощение катионов катионитами и анионов анионитами. Другой пример фракционирования на основе того же принципа заключается в сорбции ионов малых размеров ионитами, не способными из-за недостаточной пористости поглощать большие ионы. Так, инсулин может быть отделен от белков сыворотки крови, глобулярные белки от продуктов их деструкции, получающихся нри разрыве S—S связей. Синтез ионообменных смол для этой цели, обладающих определенной степенью пористости, основан на введении определенного, ограниченного количества сшивающего агента. [c.118]

    Ранее [ ] нами был получен неорганический электропно-ионообмен-ник вольфрамат циркония (ВЦ), исследованы его электроно-ионообмен-ные свойства в зависимости от условий получения. Поскольку в окислительно-восстановительных процессах принимают участие ионы вольфрама, то выбирались такие условия синтеза ВЦ, которые обеспечили бы максимальное содержание вольфрама в образцах. Интересно было с этой точки зрения получить электронообменник на основе циркония и какой-либо полимерной формы вольфрама и изучить окислительно-восстановительные и ионообменные свойства этого продукта. [c.33]

    При этом следует подчеркнуть принципиальную разницу между изоморфизмом и ионным обменом. Наличие изоморфизма атомов в кристаллической структуре минерала — необходимое, но недостаточное условие для проявления ионообменных свойств. Действительно, целый ряд изоморфных замещений не может быть реализован путем ионного обмена на основе уже готовой кристаллической структуры минерала и осуществляется только в результате синтеза или рекристаллизации, тогда как ионнообменные замещения приводят, как правило, к образованию соединения, изоморфного с исходным минералом. Кроме того, характер изоморфных замещений при заданных физико-химических условиях определяется кристаллической структурой минералов, а ионный обмен есть свойство, возникающее только в гетерогенных системах типа кристаллическая фаза — жидкость. [c.102]


    С развитием гель-хроматографии органических веществ [1], многофазного синтеза полипептидов в полифункциональных гелях [2] и ионообменной хроматографии органических ионов особое значение приобретают нерастворимые полимеры с определенной и воспроизводимой сетчатой структурой, проницаемые для молекул или ионов заданного размера. Набухающие сополимеры стирола и дивинилбензола уже нашли широкое применение в процессах разделения, но воспроизводимость достигнутых результатов, по-видимому, возможна лишь нри строгой стандартизации структуры сополимеров и ионитов, полученных на их основе. Изменением соотношения стирола и дивинилбензола, сополимеризацией их в присутствии телогенов [3] или растворителей [4], проведением последующих химических превращений в условиях, сводящих к минимуму возможность возникновения новых узлов в сетке сополимеров, могут быть созданы наборы гелей с широким диапазоном проницаемости. Применение ионитов в полях ионизирующих излучений высокой интенсивности предъявляет особые требования к структуре сополимеров. Было установлено, что применение технического дивинилбензола (в отличие от индивидуальных изомеров) понижает радиационную устойчивость сополимера [5]. Все эти ограничения требуют создания высококачественных и стабильных по своим свойствам ионитов и особых методов оценки их качества. [c.17]

    Сущность процесса ионного обмена. В середине XIX в. было открыто свойство почв обменивать в эквивалентных количествах входящие в их состав ионы на дрз гие ионы, содержащиеся в почвенном растворе. Способность к ионному обмену была позднее открыта и у некоторых природных алюмосиликатов (глауконитов, бентонитов). Первый искусственный минеральный ионообменный материал был получен в начале XX в., но из-за малой механической и химической стойкости и недостаточно высокой способности к ионному обмену он не нашел широкого применения в практике. Несколько позднее обработкой бурых углей серной кислотой был получен сульфоуголь, обладающий способностью к обмену катионов. Первый полимерный ионообменник, синтезированный Адамсом и Холмсом в 1935 г., положил начало большому количеству работ по синтезу новых ионообменных материалов, по изучению их свойств и применению в различных отраслях хозяйства. Наиболее ши Уоко используются ионообменные материалы в практике подготовки природных и очистки производственных сточных вод. Природные, искусственные и синтетические материалы, способные к обмену входящих в их состав ионов на ионы контактирующего с ними раствора, называются ионитами. Иониты, содержащие подвижные катионы, способные к обмену, называются катионитами, а обменивающие анионы — анионитами. Наибольшее практическое значение для очистки воды имеют органические полимерные иониты, которые являются полиэлектролитами. В этих соединениях одни ионы (катионы или анионы) фиксированы на углеводородной основе (матрице), а ионы противоположного знака являются подвижными, способными к обмену на одинаковые по знаку заряда ионы, содержащиеся в растворе. [c.80]

    Совершенно новые возможности открылись для применения явления ионообменной сорбции в течение последних двух десятков лет в связи с синтезом ионообменных смол. Последние представляют собой полимеры, несущие кислотные или основные функциональные группы. В первом случае это катиониты, т. е. сорбенты, способные к обмену катионов, во втором — аниониты. Направленный синтез ионообменных смол открыл большие возможности для получения ионитов, несущих различные кислотные или основные радикалы, способных находиться не только в солевой, но и в кислотной или основной форме, а также ионитов, обладающих различной, в том числе и очень значительной, емкостью сорбции. На основе органического синтеза и процессов полимеризации и поликонденсации имеется возможность получать иониты, обладающие исключительно большой избирательностью сорбции ионов. Один из принципов синтеза специфических ионитов основан на использовании в качестве мономера при получении ионообменной смолы вещества, являющегося аналитическим реактивом, например осадителем, на тот или иной ион. Так, например, описан ионит, избирательно сорбирующий ионы калия [5] и не обладающий подобными свойствами по отношению к ионам натрия. Избирательной способностью сорбировать поны тяжелых металлов обладают иониты, содержащие сульфгидрильные функциональные группы [6]. Перспективным является также 1Ювоо направление синтеза специфических ионитов на основе введения комплексона в структуру смолы [7]. [c.7]

    Изучение этих веществ послужило основой для синтеза искусственных веществ, обладающих ионообменными свойствами. Вещества, способные к обмену содержащихся в них ионов на ионы раствора, в который они погружены, называют ионитами (ионообменники, ионообменивающие вещества). Они представляют собой твердые, нерастворимые в воде полимерные вещества, содержащие в своей структуре ионогенные (активные) группы, подвижные ионы которых способны обмениваться на ионы с зарядом того же знака раствора, с которым ионит приведен в контакт. Если между ионитом и раствором происходит обмен катионов, то ионит называют катионитом если между ионитом и раствором происходит обмен анионов, ионит называют анионитом. Катиониты представляют собой вещества кислотного характера, они содержат в своей структуре ионогенные группы кислотного характера, например сульфокислотные или карбоксильные. Химические формулы катионитов могут быть схематически изображены следующим образом например, К50з Н Н50з Ма+ или просто КН, КЫа. В первом случае говорят, что катионит находится в Н-форме, во втором — в Ма-форме. Ионогенные группы прочно связаны с матрицей ионита. Ионы противоположного знака (в наших примерах Ма+ и Н+) могут обмениваться на ионы, находящиеся в растворе. Их называют противоионами. Таким образом, катиониты являются поливалентными анионами с положительно заряженными противоионами. Катионообменные реакции можно изобразить в следующем виде  [c.15]


    Из многочисленной литературы, касающейся получения и свойств ионитов 5977-6032 следует выделить синтез ионообменных-смол на основе внутрикомплексных солей Эти смолы получают обработкой полистирилизоцианата аминокислотами. В ряде монографий 5985-5987 подробно рассмотрены теория и практика ионного обмена. [c.337]

    Понятно, что выбор модификатора диктуется задачей, которая стоит перед исследователем. В большинстве случаев при синтезе поверхностно-модифицированных материалов стремятся к получению максимально плотных слоев привитых молекул. При этом химические свойства материала определяются химической природой иммобилизованного на поверхности соединения. Однако такой подход используется не всегда встречаются задачи, когда требуется создать на поверхности носителя разреженный слой привитых молекул. Так, катионит на минеральной основе для ионной ВЭЖХ должен иметь очень ограниченную ионообменную емкость, которая достигается низкой плотностью прививки сульфогрупп. Очевидное, казалось бы, требование максимально прочного закрепления привитых молекул на поверхности также не всегда справедливо. Например, иммобилизованные на поверхности носителя лекарственные препараты должны легко элюироваться в ткани под действием биологических жидкостей или ферментов, поэтому связь между молекулой препарата и поверхностью должна быть достаточно лабильной. Из приведенных примеров ясно, что синтетические задачи химии привитых поверхностных соединений исключительно многообразны. Тем не менее, при выборе модификатора следует руководствоваться определенной логикой. [c.68]


Смотреть страницы где упоминается термин ОСНОВЫ ИОНООБМЕННОГО СИНТЕЗА Иониты и их свойства: [c.117]    [c.115]    [c.319]    [c.8]   
Смотреть главы в:

Ионообменный синтез -> ОСНОВЫ ИОНООБМЕННОГО СИНТЕЗА Иониты и их свойства




ПОИСК





Смотрите так же термины и статьи:

Ионообменные свойства

Синтез и свойства



© 2025 chem21.info Реклама на сайте