Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Титан и сплавы на его основе, цирконий

    Применение элементов подгруппы титана. Титан вдвое легче стали, а титановые сплавы в. 3 раза прочнее алюминиевых, в 5 раз прочнее магниевых сплавов и превосходят некоторые специальные стали, в то время как их плотность значительно меньше, чем последних. Поэтому титан и сплавы на его основе широко используются в авиа- и судостроении, космической технике. Кроме того, титан и цирконий используются как в качестве легирующих добавок к черным и цветным сплавам, так и в качестве основы конструкционных материалов, способных работать в экстремальных условиях. Для легирования сталей и модифицирования чугунов обычно используют ферротитан и ферроцирконий (сплавы с железом, содержащие 20—40% Ti или Zr). Добавка к стали уже 0,1% Ti способствует повышению ее твердости и эластичности. Такая сталь идет на изготовление рельсов, вагонных осей и т. п. Добавки циркония в таком же количестве резко повышают вязкость стали (броневые плиты). [c.244]


    Титан и сплавы на его основе, цирконий [c.178]

    Практическое использование в хлорной промышленности МИА получили после разработки окиснорутениевых анодов [171, 172], в которых основой электрода служит титан. Возможно также применение тантала, ниобия, циркония или их сплавов, однако из-за высокой стоимости этих металлов нашел применение только титан. На титановую основу электрода различными способами наносится смесь окислов рутения и некоторых Неблагородных металлов (Ti, Fe, Pb, Со, Mo и др.) [120-124]. [c.79]

    НИОБИЯ СПЛАВЫ - сплавы на основе ниобия. В пром. масштабах применяются с начала 50-х гг. 20 в. Отличаются высокой жаропрочностью, сравнительно небольшой плотностью, низким поперечным сечением захвата тепловых нейтронов (1,15 барн/атом), пластичны при обработке давлением и хорошо свариваются, стойки в некоторых кислотах и в расплавах щелочных металлов. При нагреве на воздухе и в др. окислительных средах подвержены окислению при т-ре свыше 400° С. По мех. св-вам при рабочей т-ре различают низкопрочные сплавы, имеющие преимущество перед нелегированиым ниобием при т-ре до 1100—1150° С среднепрочные сплавы (применяемые до т-ры 1200—1250° С) и высокопрочные сплавы (применяемые при т-ре до 1250—1300° С, кратковременно до т-ры 1450—1500° С). Низкопрочные сплавы содержат в качестве легирующих элементов гл. обр. титан, цирконий или гафний, иногда ванадий и тантал. Т-ра плавления таких спла- [c.74]

    К тугоплавким условно относят металлы и сплавы с температурой плавления выше 1700°С. Это, прежде всего, вольфрам, молибден, титан, тантал, ниобий, цирконий, рений и сплавы на их основе. Тугоплавкие металлы отличаются низкими скоростью ис- [c.47]

    Другой причиной, препятствующей определению р и а двойных сплавов на основе железа, является высокая химическая активность ряда элементов. Нет пока материалов, которые могли бы контактировать, не взаимодействуя, с жидким титаном, цирконием, ванадием и рядом лантанидов. Изучение р и сг двойных систем на основе железа во всем концентрационном интервале также ограничено высокой температурой плавления одного из компонентов (бор, гафний, ниобий, тантал, молибден, вольфрам, рений, рутений, родий, осмий, иридий). [c.39]

    Прм Титан вдвое легче стали, а титановые сплавы в три раза прочнее алюминиевых, в 5 раз прочнее магниевых сплавов и превосходят некоторые специальные стали, в то время как их плотности значительно меньще, чем последних. Поэтому титан используется как основа сплавов с А1, V, Мо, Мп, Сг, Si, Fe, Sn, Zr, Nb, Та и др. для авиационной и ракетной техники, морского судостроения. Титан является конструкционным материалом для изготовления оборудования для химической, текстильной, бумажной, пищевой промышленности, а также художественных изделий, является геттером. Фазы внедрения на основе титана и циркония (бориды, карбиды, нитриды) являются основой жаропрочных материалов, применяемых для футеровки ответственных деталей узлов и механизмов, работающих в жестких условиях в агрессивных средах. Карбиды титана в сочетании с карбидами кобальта и вольфрама применяются для получения [c.121]


    Прямое определение Sb в сочетании с рядом других элементов производится в самых разнообразных материалах, в том числе в алюминии [54, 55, 1134, бериллии и его соединениях [305, 1297], боре [778, 11171 и фосфиде бора [26], ванадии и его окислах [234, 491, 1117], висмуте [809, 909, 1134], вольфраме и его соединениях [195, 739, 795, 1265], вольфрамовых рудах [1480], германии и его соединениях [559, 634, 905], горных породах [386, 730, 1182, 1240, 1336, 1443, 1599], графите и углероде [235, 397, 612], жаропрочных и тугоплавких сплавах [176, 177, 379, 1278, 1593], железе [425, 1134, 14411, железных рудах и минералах [198, 386, 636, 971, 1336], сталях [176, 546, 1278, 1441, 1593] и чугуне [61, 274, 546, 1250], золоте [404, 754, 909, 1095] и его сплавах [196, 389,390, 1167], индии [1168, 1308] и сплавах на его основе [814, 815, 1267], иттрии и его окислах [234, 272], алюмоиттриевом гранате [82], кадмии [598, 599, 1134] и кадмиевых сплавах [819], кобальте [60, 153, 1134], кремнии [252, 1619], кварце [154], карбиде кремния 109, 110, 288, 789, 790, 1353], кремниево-медных сплавах 594], силикатах [1586], технических стеклах [612, 1579], меди 129, 482, 964, 997, 1176, 1599, 1609, 1645, 1654], медных сплавах 96, 482, 1048, 1188, 1457,1463, 1566], окиси меди [199], продуктах медеплавильного производства [3601 и медных электролитах [1298, 1600], молибдене и его соединениях [104, 237, 308, 795, 1325, 1347, 1443], мышьяке [472, 1134], никеле и никелевых сплавах [486], ниобии и его окислах [49, 972], олове [582, 744, 782, 812, 900, 1684] и его сплавах [1210, 1494, 1495], полупроводниковых материалах [668, 678, 806, 1298, 16841, припоях [210, 1101], свинце [481, 534, 908, 1154, 1155,1193, 1543,1655], свинцовых сплавах [126, 871], рудах [53, 667, 806, 1143] и пылях [811], РЗЭ и их окислах [234, 353], селене [154, 155, 499, 747, 818, 1134], селениде ртути [715], сере [189, 1134], серебре [388, 390, 391, 909, 1598], хло- иде серебра [1362], стеклоуглероде [397], сульфидных рудах 638], тантале [237], теллуре [156, 591, 592, 1134, 1613], теллуровом баббите [1656] и теллуриде свинца [342], типографских сплавах [323], титане и двуокиси титана [288, 306, 1262], тории и его окислах [272], уране [1447], окислах урана [878, 1182, 1240] и урановых рудах [1443], ферросплавах [792, 793], фосфоритах [879], хроме [555, 729, 792] и его окислах [54, 55, 571], цинке [976] и цинковых рудах и минералах [1142], цирконии [679] и двуокиси циркония [1368], производственных растворах [205, 882, 1290, 1323, 1324, 1483], сточных и природных водах [429], азотной, серной, соляной, уксусной, фтористоводородной и бромистоводородной кислотах [111, 121, 407, 552, 574, 10081, воздушной пыли [121. [c.81]

    В качестве основы такого составного электрода помимо титана могут быть использованы тантал, в некоторых случаях цирконий или ниобий, а также различные сплавы этих металлов. Однако наибольшее техническое значение по сравнению с другими металлами имеет титан как по электрохимическим и механическим свойствам, так и по доступности. Поэтому настоящая глава посвящена в основном рассмотрению поведения титана, используемого как основа конструкции электрода. Об остальных пленкообразующих металлах (цирконий, ниобий и тантал) написано менее подробно. [c.107]

    УРАНА сплавы — сплавы на основе урана. В пром. масштабах применяются с 50-х гг. 20 в. Для легирования У. с. используют преим. такие хим. элементы, к-рые поглош,ают незначительное количество нейтронов углерод, кремний, цирконий, алюминий, ниобий, молибден, хром, ванадий, титан и др., или элементы, [c.627]

    Выполнение работы. Навеску сплава 0,1—0,2 г растворяют либо в соляной (сплавы на алюминиевой, титановой основе и др.), либо в азотной (сплавы на медной основе) кислотах. При анализе сплава на титановой основе, после растворения навески в соляной кислоте, окисляют титан перекисью водорода и кипятят раствор до обесцвечивания. Раствор переводят в мерную колбу и создают кислотность 2 и. Для фотометрирования отбирают аликвотную часть раствора, содержащую 5—25 мкг циркония, разбавляют до 10 мл [c.115]

    II (111)р и направление [1120] , 1[110]р. Возникает в процессе термической обработки (закалки, старения металлов) сплавов титана с переходными элементами, сплавов на основе циркония, гафния и сплавов урана с цирконием и ниобием, а иногда при эксплуатации этих сплавов в условиях повышенных т-р. Образуется в результате резкого охлаждения (когда происходит без-диффузионпое превращение) или изотермического распада (связанного с расслоением на участки различной концентрации легирующего элемента) метастабильной бета-фазы. Устойчива в критической области определенных электронных концентраций при т-ре ниже 400—500° С. В отличие от обычных мартенситных превращений, присущих сталям и сплавам на основе цветных металлов, образование О.-ф. не сопровождается появлением характерного рельефа на поверхности полированного образца. О.-ф. резко снижает пластичность сплавов, что часто исключает возможность их использования, значительно повышает прочность и упругие св-ва. Образование О.-ф. сопровождается отрицательным объемным эффектом. Кроме того, О.-ф. отличается положительным коэфф. электрического сопротивления. Выявляют ее в основном с помощью электронномикроскопического анализа, рентгеновского анализа, методом электросопротивления и дилатометрического анализа. Лит. Носова Г. И. Фазовые превращения в сплавах титана. М., 1968 Г р а -б и н В. Ф. Основы металловедения и термической обработки сварных соединений из титановых сплавов. К., 1975 М а к-квиллэн А. Д., Макквил-л э.н М. К. Титан. Пер. с англ. М., 1958. [c.115]


    Титан и цирконий имеют большое значение для металлургии. Главные свойства титана и его сплавов, способствующие все более широкому их применению, — высокая жаростойкость и жаропрочность (способность сохранять механические свойства при повышенных температурах). Благодаря этому Т1 и его сплавы используются в самолета-и ракетостроении. Титан лишь немного тяжелее алюминия, но в три раза прочнее его. Это позволяет применять титан в машиностроении. Детали из титана и его сплавов в двигателях внутреннего сгорания снижают массу этих двигателей примерно на 30%. Присадка титана придает стали твердость и пластичность, а присадка циркония — твердость и вязкость. К важнейшим сплавам циркония относятся циркаллоны — сплавы на основе 2г,содержащие небольшие количества Зп, Ре, Сг и N1. Цирконий добавляют к меди, что значительно повышает ее прочность, не снижая электрической проводимости. Качество алюминиевых сплавов также значительно повышается при добавлении к ним циркония. [c.285]

    Наивысшей абсорбцией водорода обладают элементы ПШ группы — лантаноиды и актиноиды. Гидридам элементов IVb группы уже не отвечает предельное содержание водорода, казалось бы соответствующее этой группе — МеН4. Даже при повышенных давлениях достигается лишь состав МеНг. Й по свойствам своим эти гидриды, по сравнению с гидридами лантаноидов, значительно более приближаются к металлическим сплавам, что следует хотя бы из возможности построения диаграмм состояния таких систем, как титан — водород и цирконий водород, на основе применения методов термического анализа и изучения микроструктуры. При дальнейшем движении в сторону возрастания номера вертикальных групп периодической системы абсорбция водорода все уменьшается, и для гидридов элементов семейства железа и подгрупп меди и цинка мы переходим в область эндотермической абсорбции водорода, т. е. растворов водорода в металлах, подчиняющихся закону Сивертса, если не считать палладия, значительное поглощение водорода которым уже близко к стехиометрическому и сопровождается выделением тепла. [c.161]

    Обобщению накопленных экспериментальных данных по питтинговой коррозии посвящены работы многих исследователей [4, 24, 42—44]. Обычно этому виду коррозии подвергаются легкопассивирующиеся металлы и сплавы железо и особенно сплавы на его основе — такие важные и широко распространенные конструкционные сплавы, как нержавеющие стали, а также алюминий и его сплавы, никель, цирконий, титан и др. [c.72]

    Железо, титан, цирконий и многие сплавы на их основе способны пассивироваться в концентрированной азотной кислоте, но при концеитрации кислоты >95% нержавеющие стали иногда склонны к иереиассивации, ирн которой разрушается за-п итпая пленка и окисление сталей ускоряется. Коррозионная активность кислоты возрастает ири наличии в растворе ионов хлора особенно важно иметь это в виду для материалов, пассивирующихся в чистой азотной кислоте. Алюминий рекомендуется для концентраций кислоты <1% и >80%. Титан и цирконий ие рекомендуются для дымящей азотной кислоты, о этом случае возможно образование пирофорных продуктов реакции, чувствительных к удару, т. е. реакция может протекать со взрывом. Медь и свинец нестойки в растворах азотной кислоты, так как в результате нх реакции с кислотой образуются легкорастворимые вещества. Для эксплуатации при нормальной температуре рекомендуется аппаратура из хромистого чугуна. Необходнмо учитывать возможность [c.807]

    ХИМИЧЕСКИ СТОЙКИЕ МАТЕРИАЛЫ — материалы, применяемые в химической промышленности, машино-и приборостроении, как защитные и конструкционные материалы, устойчивые против коррозии при действии различных агрессивных веществ (кислот, щелочей, растворов солей, влажного газообразного хлора, кислорода, оксидов азота и т. д.). X. с. м. делятся па металлические и неметаллические. К металлическим X. с. м. относятся сплавы на основе железа с различными легирующими добавками, такими как хром, никель, кобальт, марганец, молибден, кремний и т. д., цветные металлы и сплавы на их основе (титан, цирконий, ниобий, тантал, молибден, ванадий, свинец, никель, алюминии). К неметаллическим X. с. м. относятся различные органические и неорганические вещества. X. с. м. неорганического происхождения представляют собой соли кремниевых и поликрем-ниевых кислот, алюмосиликаты, кальциевые силикаты, кремнезем с оксидами других элементов и др. X. с. м, органического происхождения подразделяются на природные (дерево, битумы, асфальты, графит) и искусственные (пластмассы, резина, графитопласты и др.). Наибольшую химическую стойкость имеют фторсодержащие полимеры, которые не разрушаются при действии почти всех известных агрессивных веществ и даже таких, как царская водка. Высокой химической стойкостью отличаются также графит и материалы на его основе, лаки, краски, применяемые для защиты металлических поверхностей. [c.274]

    Никелевые сплавы НМЖМц28-2,5-и5 Н70МФ ХН65МВ Свинец Серебро Тантал Титан Цирконий Бакелитовые лаки Битумные лаки Замазки на основе силикатов [c.28]

    Современные твердофазные материалы исключительно многообразны по составу /И охватывают практически все элементы периодической системы. Как правило, материалы имеют сложный состав, включая три и более химических элемента. Из простых веществ в качестве материалов используют в основном алюминии, медь, углерод, кремний, германий, титан, никель, свинец, серебро, золото, тантал, молибден, платиновые металлы. Материалы на основе бинарных соединений также сравнительно немногочисленны. Среди них наиболее известны фториды, карбиды и нитриды переходных металлов, полупроводники типа халькоге-нидов цинка, кадмия и ртути, сплавы кобальта с лантаноидами, обладающие крайне высокой магнитной энергией, и сверхпровод-никовые сплавы ниобия с оловом, цирконием или титаном. Намного более распространены сложные по составу материалы. В последнее время нередко в химической литературе можно встретить твердофазные композиции, содержащие в своем составе свыше 10 химических элементов. [c.134]

    Нержавеющие стали подвержены точечной коррозии. Цирконий, титан и сплавы на их основе являются- наиболее корроэи-ониостойкимн материалами в этой среде, однако стойкость титана снижается при аэрирований раствора (прн концентрации р-ра 25% и температуре 100 С). Б аэрируемых растворах не рекомендуется также применять моиель-металл. В водных растворах соль подвергается гидролизу с об разованием соляной кислоты, поэтому углеродистые стали, латуин. алюминий подвергаются интенсивней общей и местной коррозии. В горячих концентрированных раст.ворах хромоникелевые стали под напряжением подвержен коррозионному растрескиванию. Никельхромовые сплавы при повышенных температурах ие. проявляют склонности к коррозионному растрескиванию. Возможна местная коррозия сталей и никелевых спла.вов. [c.809]

    С этой точки зрения особый интерес представляет титанонике-лециркониевый сплав 4207 (титан-основа, никель-2,5 , цирконий -2 ), технология производства которого отработана в опытнш масштабе. [c.51]

    КИСЛОТОСТОЙКИЕ МАТЕРИАЛЫ — материалы, отличающиеся повышенной кислотостойкостью, вид химически стойких материалов. В пром. масштабах используются с середины 18 в. Различают К. м. металлические и неметаллические. К металлическим К. м. относятся сплавы на основе железа, а также цветные металлы и их сплавы (см. также Кислотостойкие сплавы). Кислотостойкие сплавы на основе железа углеродистые стам (нелегированные, низколегированные), содержащие до 1% С высоколегированные стали, имеющие в своем составе хром, никель, медь, марганец, титан и др. хим. элементы чугуны (нелегированные, высоколегированные), содержащие более 2,5—2,8% С. Кислотостойкие цветные металлы никель, медь, алюминий, титан, цирконий, олово, свинец, серебро, ниобий, тантал, золото, платина и др. Углеродистые стали стойки в растворах холодной азотной к-ты (концентрация 80—95%), серной к-ты (выше 65%) до т-ры 80° С, в плавиковой к-те (выше 65%), а также в смесях азотной и серной к-т. На углеродистые стали сильно действуют органические к-ты (адипиновая, муравьиная, карболовая, уксусная, щавелевая), особенно с повышением их т-ры. Высоколегированные стали, отличаясь повышенной стойкостью к коррозии металлов (см. также Коррозионностойкие материалы), являются в то же время кислотостойкими. Большинство легирующих добавок значительно повышают кислотостойкость сталей. Так, медь придает хромоникелевым сталям повышенную стойкость к серной к-те. Сталь с 17—19% Сг, 8-10% Мп, 0,75-1% Си, 0,1% С и 0,2—0,5% Si стойка в азотной к-те (любой концентрации и т-ры вплоть до т-ры кипения) и многих др. хим. соединениях (см. Кислотостойкая сталь). Кислотостойки высоколегированные чугуны никелевые, хромистые (см. Хромистый чугун), алюминиевые (см. Чугалъ), высококремнистые (ферросилиды), хромоникель-медистые (см. Нирезист), хромони-келькремнистые (никросилал). Наиболее распространены ферросилиды [c.586]

    КОРРОЗИОННОСТОЙКИЕ МАТЕРИА л Ы — материалы, отличающиеся повышенной коррозионной стойкостью. Различают К. ы. конструкционные (металлические, неметаллические, композиционные), используемые для изготовления конструкций, и защитные, предохраняющие металлические сооружения от коррозии. Материалы, обладающие повышенной хим. стойкостью к активным газовым средам при повышенных т-рах, обычно выделяют в разряд жаростойких материалов (см. также Коррозия металлов. Коррозия бетона, Защитные покрытия). К м е т а л л и ч е с к и м К. м. относятся стали, чугуны, сплавы на основе никеля, меди (бронзы, латуни), алюминия, титана, циркония, тантала, ниобия и др. Их стойкость против электрохимической коррозии в принципе можно повышать увеличением термодинамической стабильности или торможением катодного и анодного нроцессов. На практике повышения коррозионной стойкости технических сплавов обычно добиваются легированием, тормозящим анодный процесс, т. е. улучшающим пассивационные характеристики (см. Пассивирование), обусловливая возможность самопассивиро-вания сплава в условиях эксплуатации. Наиболее легко пассивируются хром и титан. Повышенная способность хрома к пассивации нри его введении в менее пассивирующиеся металлы, напр, железо, может передаваться сплаву. На этом принципе основано получение нержавеющих сталей. Чем больше введено хрома, тем выше коррозионная стойкость [c.625]

    ЭЛЕКТРОВАКУУМНЫЕ МАТЕРИАЛЫ — материалы, предназначенные для эксплуатации в условиях вакуума илп разреженных газов. Про.. , производство больщинства Э. м. освоено в СССР в 50-х гг. Э. м. подразделяют па электродные (материалы катодов, анодов, сеток, кре-нежпых деталей в электр, н электровакуумных приборах и т. п.) и электроизоляционные (стекло, электрокерамика, в т. ч. люминофоры). К электродным Э. м. относятся тугоплавкие металлы (вольфрам, молибден, тантал, пиобий, титан, цирконий, рений), черные и цветные металлы (железо, никель, медь), а также сплапы на их основе. Осн. марки сплавов па основе переходных метал- [c.767]

    Сплавы ниобия и тантала. Поскольку МЬаОб — полупроводник п-типа с анионными вакансиями, можно было бы полагать, что добавка в ниобий более высоковалентного металла (в области параболического окисления) должна привести к снижению скорости окисления. Однако анализ изменения концентрации и подвижности анионных вакансий в МЬдОа при легировании титаном, ванадием, хромом и алюминием показывает, что в связи с высокой концентрацией дефектов, отличающейся лишь на два порядка от концентрации свободных электронов в металлах, и возможным изменением подвижности при изменении их концентрации подход к жаростойкому легированию ниобия с позиции теории Вагнера неприменим. Априорный выбор добавок в данном случае затруднен. Важную роль играет размер иона легирующего элемента. При образова НИИ однофазной окалины легирование ниобия металлами, образующими ионы меньшего, чем ион N5 , размера, может привести к сжатию ячейки на основе ЫЬзОь, снижению объемного отношения и торможению диффузии ионов О в оксиде. Например, легирование ниобия цирконием, имеющим больший, чем у радиус иона (0,79и 0,69-10 м соответственно), ускоряет окисление ниобия, а V, Мо и Сг (с радиусом ионов 0,59 0,62 и 0,63-10 м соответственно) — замедляют. [c.427]


Смотреть страницы где упоминается термин Титан и сплавы на его основе, цирконий: [c.251]    [c.154]    [c.227]    [c.169]    [c.104]    [c.395]    [c.277]    [c.809]    [c.243]    [c.138]    [c.6]    [c.262]    [c.566]    [c.628]    [c.773]    [c.815]    [c.75]    [c.137]    [c.345]    [c.594]    [c.356]   
Смотреть главы в:

Электрохимия Том 9 -> Титан и сплавы на его основе, цирконий




ПОИСК





Смотрите так же термины и статьи:

Сплавы с цирконием

Сплавы титана



© 2025 chem21.info Реклама на сайте