Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тропомиозин

    Тропомиозин Гемоглобин Миоглобин Альбумин плазмы Инсулин Фибриноген Овальбумин Лизоцим  [c.319]

    Сердечная мышца по содержанию ряда химических соединений занимает промежуточное положение между скелетной мускулатурой и гладкими мышцами. Так, общее содержание белкового азота в скелетных мышцах кролика составляет 30—31 мг/г, а в гладкой мускулатуре (миометрий)—до 20,3 мг/г. В сердечной мышце и особенно в гладких мышцах значительно меньше миофибриллярных белков, чем в скелетной мышце. Общее содержание миофибриллярных белков в гладкой мышечной ткани желудка примерно в 2 раза ниже, чем в скелетных мышцах. Концентрация белков стромы в гладких мышцах и миокарде выше, чем в скелетной мускулатуре. Известно, что миозин, тропомиозин и тропонин сердечной мышцы и гладкой мускулатуры заметно отличаются по своим физико-химическим свойствам от соответствующих белков скелетной мускулатуры. Отмечены определенные особенности и во фракциях саркоплазматических белков. Саркоплазма гладкой мускулатуры и миокарда в процентном отношении содержит больше миоальбумина, чем саркоплазма скелетной мускулатуры. [c.652]


    Миофибриллярные белки составляют 50—60% общего количества белков мышечных клеток. При низкой ионной силе эти белки нерастворимы, а при повышении ее до 0,3 становятся растворимыми и могут быть экстрагированы. Главный белок мышцы. миозин составляет основу толстых нитей. Другой белок, актин, является главной составной частью тонких нитей (рис. 4-7). С нитями актина связаны регуляторные белки мышцы — тропомиозин и тропонин [84], а в Z-пластинке имеется а-актин. Не так давно в составе М-линий обнаружен белок, который был назван ]У -белком [85]. [c.318]

    Вторичная структура белков. Это первый этап пространственной организации полипептидных цепочек, контролируемый водородными связями пептидных групп, как внутримолекулярными, так и межмолекулярными. Основными видами вторичной структуры являются а-спираль, характерная как для всей молекулы белка (кератин волос, миозин и тропомиозин мышц), так и только для отдельных участков белкового полимера (инсулин). Она стабилизирована внутримолекулярными водородными связями >С=0- Н-Ы<. [c.97]

    Если полностью удалить регуляторные белки из актиновых фибрилл, то сокращение будет продолжаться до тех пор, пока не истощится запас АТР. В присутствии же регуляторных белков и в отсутствие кальция блокируется как сокращение, так и гидролиз АТР. Рабочая гипотеза, объясняющая функционирование этой системы [93, 94], постулирует, что вытянутые палочки тропомиозина входят в бороздки между актином и миозиновыми головками [92]. На рис. 4-24 схематически представлена структура комплекса актомиозин-тропомиозин (вид сверху). Головка (S1) молекулы миозина присоединена к одной из субъединиц актина. В покоящейся мышце тропомиозин присоединен к актину около того места, с которым связан S 1-участок миозина. В результате палочка тропомиозина блокирует присоединение Sl-поперечных мостиков миозина к актину и предотвращает стимулируемый актином гидролиз АТР. Молекула тропомиозина, длина которой составляет 41 нм, контактирует одновременно с семью субъединицами актина [95]. Таким образом, комплекс тропомиозин — тропонин синхронно контролирует работу семи субъединиц актина. [c.325]

    В особых случаях, когда можно ожидать высокоупорядоченные повторения, как, например, в коллагене или в тропомиозине, такие [c.237]

    В механизме мышечного сокращения важное значение имеют еще два белка-тропомиозин и тропонин. Молекула первого (мол. м. 67 тыс.) полностью построена из а-спиралей и состоит из идентичных по первичной структуре фрагментов, содержащих по 42 аминокислотных остатка. В бессолевой среде тропомиозин полимеризуется, образуя вязкую структуру, обладающую двойным лучепреломлением. При взаимод. с F-актином молек) ла тропомиозина укладывается в бороздки, образованные двойной спиралью актина. Молекула тропонина представляет собой комплекс, состоящий из трех белков,-тропонина Т (мол. м. 37 тыс.), тропонина I (мол. м. 25 тыс.) и тропонина С (мол. м. 20 тыс.). Тропонин I-ингибитор актомиозиновой Mg-АТФазы, тропонин С способен к связыванию ионов Са , тропонин I связывается с актином, тропонин Т с тропо-миозином. [c.93]


    Как отмечалось, кроме рассмотренных основных белков, в миофибриллах содержатся также тропомиозин, тропонин и некоторые другие регуляторные белки. [c.650]

    В тонких нитях наряду с актином содержатся другие белки — тропомиозин и тропонин. Тропомиозин имеет м. м. около 70000, [c.395]

    Молекула тропонина состоит из трех полипептидных цепей с мол. массами от 18 000 до 37 000 дальтон. Один полипептид (Т) прочно связывает тропонин с тропомиозииом в участке, расположенном приблизительно на одной трети расстояния от С- до N-конца, со стороны С-конца. Второй полипептид (I), входящий в состав тропонина, взаимодействует с актином в отсутствие ионов Са + и работает вместе с остальными двумя полипептидами, удерживая тропомиозин в таком положении, в котором он ингибирует гидролиз АТР. Когда третий полипептид (С-субъединица) присоединяет ионы кальция, то ингибирование прекращается и может начаться сокращение. Однако общая картина функционирования всей этой машины остается непонятной. По данным рентгеноструктурного анализа и электронной микроскопии [93, 94], при связывании кальция с тропонином тропомиозин отклоняется от S1 примерно на 20°, открывая активный центр для взаимодействия миозин — АТР—актин (рис. 4-24). Возможно, тропомиозин катится наподобие ролика вдоль поверхности актина, открывая центры одновременно в семи молекулах актина Если это действительно так, то какого рода мотор используется при этом и что не позволяет ролику упасть с актина Обо всем этом мы может только догадываться. Вполне возможно, что боковые цепи отдельных аминокислотных остатков тропомиозина, выступающие наподобие зубцов на субмикроскопической шестеренке, входят в комплементарные углубления актина. Тогда возникает вопрос почему связывание иона кальция с тропомиозииом приводит к тому, что тропомиозии начинает катиться , как ролик, по актину Мы знаем, что присоединение металлов к белкам может приводить к очень сильным конформационным изменениям (разд. В.8.в). Не исключено, что конформационное изменение С-субъединицы тропонина [c.325]

    Было высказано предположение о существовании серии мостиков из иоиов магния между отрицательно заряженными участками тропомиозина и актниа [95а]. [c.325]

    В своей наиболее упорядоченной форме суперспирализованная а-спираль встречается в фибриллярных белках. Хорошим примером сверхвторичной структуры является суперспирализованная а-спираль, постулированная Криком [210]. В этой структуре две а-спирали скручены друг относительно друга, образуя левую суперспираль с периодом идентичности около 140 А (рис. 5.11, а). Суперспирализованные а-спирали обнаружены в фибриллярных белках а-кератине [211, 212], тропомиозине [213], парамиозине [214] и легкой цепи меромиозина [215]. Короткие участки такой сверхвторичной структуры наблюдались в глобулярных белках, содержащих а-спирали, упакованные приблизительно параллельно или антипараллельно. Наиболее известными примерами упаковки спиралей, приближающейся к линейной, являются гемеритрин [216, [c.97]

    Суперспирализация а-спирали энергетически выгодна, поскольку упаковка боковых цепей способствует образованию дополнительных благоприятных вандерваальсовых контактов между а-спиралями. Если взаимодействующие боковые цепи гидрофобны, то уменьшение свободной энергии такой структуры будет особенно эффективным, поскольку, располагаясь вдоль оси суперспирали, в этом случае боковые цепи экранированы от контактов с молекулами растворителя. Действительно в тропомиозине [222] и а-кера-тине 212], аминокислотные последовательности которых известны, положения and внутри суперспирали заняты гидрофобными остатками (рис. 5.11, в). Полярные остатки обычно располагаются на внешней поверхности, в положениях Ь, с к f. В тропомиозине положения eng часто заняты заряженными остатками, которые образуют солевые мостики с находящимися напротив остатками g и е соответственно. [c.99]

    С помощью химических данных, а также результатов рентгеноструктурного анализа и электронной микроскопии было показано, что в тропомиозине [213, 223, 224) и в легком меромиозине [2151 а-спирали параллельны. По-видимому, это относится и к а-кера-тину, поскольку длинная цепь а-кератина может быть полностью синтезирована и стабилизирована, прежде чем сможет образоваться суперспираль из антипараллельных а-спиралей. Напротив, в глобулярных белках гемеритрине [216, 217] и оболочке вируса табачной мозаики [180, 218] упаковка спиралей антипараллельна. [c.100]

    В некоторых белках встречаются многократные повторения коротких последовательностей. Повторения коротких последовательностей обнаружены в так называемых периодических белках (145, 593], к которым относятся коллаген, кератин шерсти, гистоны, тропомиозин, липопротеин А1 человека и понижающий точку замерзания гликопротеин антарктической рыбы. Для последнего белка повторяющимся звеном во всей последовательности является А1а-ТЬг-ТЬг. В некоторых случаях периодичность может отражать специфические особенности соответствующей ДНК [593] в других случаях структурные особенности (образование тройной спирали коллагена, показанной на рис. 5.6, характерное присоединение тро-помиозина к нитевидному актину и гистона к двойной спирали ДНК) могли возникнуть под воздействием отбора. [c.232]

    Главным структурным н функциональным звеном клетки мышцы является саркомер (рис. 11.5)—цилиндрическое образование диаметром 1,5 МКМ и длиной 2 мкм, которое содержит около 2 Х 2000 тонких и 1000 толстых белковых нитей. В левой части рис. 11.5 показано образование толстой нити из приблизительно 200 молекул миозина. Тонкая нить образуется путем ассоциации 2 X 175 мономеров глобулярного актина, 2 X 25 молекул тропомиозина и 2 X 25 звеньев трехкомпонентного белка тропонина. Нить актина представляет собой двойную спираль (разд. 5.1) с периодом идентичности от 360 [c.284]


    Когда клеака мышцы находится в состоянии покоя, центры прикрепления поперечных мостиков в тонких нитях блокированы молекулами тропомиозина [767—769], прочными двуволокнистыми образованиями [214]. Тропомиозин — прототип суперспирализован- [c.288]

    Цепочка событий, приводящих к смещению тропомиозина, начинается на клеточной мембране. Когда нервные импульсы активируют клетку мышцы, имеющую объем 1 мкл, ионы Са + выделяются иэ саркоплазматического ретикулума [770] в цитоплазму, где концентрация свободных ионов Са + становится на два порядка выше 1 мкм (рис. 11.7). Это приводит к насыщению тропонина С — кальций-чувствительного компонента тонкой нити [771] к молекулам тропонина С присоединяются 90% из общего количества 10 ионов. Связывание Са + вызывает конформационные изменения всего тропо-нинового комплекса [772]. При измененной структуре тропонина тропомиозин уже не может больше удерживаться в выключенном состоянии. Тропомиозиновая спираль соскальзывает в сторону к новому положению ближе к центру желоба. Таким образом, одна молекула тропомиозина освобождает семь мономеров актина, способных к взаимодействию с миозином [767, 769, 785]. [c.288]

    Из а-спиралей молекул актина образуется (по типу конец к концу) две скрученных цепи, причем в спиральном желобке между ними располагается другой белок, тропомиозин. Тропомиозин, как полагают, представляет собой агрегат нескольких полипептидных цепей, образующих скрученные витки. Каждая молекула взаимодействует с семью молекулами актина. Молекула тропомиозина связывается также с молекулой тропонина, состоящего из трех субъединиц. Субъединица Т связывается с тропомиозином, субъединица I — с актинтропомиозиновым комплексом, а субъединица С — с субъединицами Т и I. В отсутствие ионов Са + субъединицы Т и I предотвращают сокращение, ингибируя взаимодействие между актином и миозином. При низких концентрациях иона Са + субъединица С лишь слабо связана с субъединицей I. При более высоких концентрациях Са + последний связывается субъединицей С, которая затем прочно связывается с субъединицей I, удаляя последнюю из актин-тропомиозинового комплекса. Ион Са +, таким образом, действует в качестве депрессора релаксации. 1-Субъединица тропонина интересна тем, что в ней содержится фосфорилиро-ваниая последовательность (29), напоминающая последовательность вокруг центра фосфорилирования в фосфорилазе а) (см. [c.578]

    К группе миофибриллярных белков относятся миозин, актин и актомиозин—белки, растворимые в солевых средах с высокой ионной силой, и так называемые регуляторные белки тропомиозин, тропонин, а- и 3-актинин, образующие в мышце с актомиозином единый комплекс. Перечисленные миофибриллярные белки тесно связаны с сократительной функцией мышц. [c.648]

    Троп омиозин был открыт к. Бейли в 1946 г. Молекула тропомиозина состоит из двух а-спиралей и имеет вид стержня длиной 40 нм его мол. масса 65000. На долю тропомиозина приходится около 4-7% всех белков миофибрилл. [c.650]

    Тропонин-глобулярный белок, открытый С. Эбаси в 1963 г. его мол. масса 80000. В скелетных мышцах взрослых животных и человека тропонин (Тн) составляет лишь около 2% от всех миофибриллярных белков. В его состав входят три субъединицы (Тн-1, Тн-С, Тн-Т). Тн-1 (ингибирующий) может ингибировать АТФазную активность, ТН-С (кальцийсвязывающий) обладает значительным сродством к ионам кальция, Тн-Т (тропомиозин-связывающий) обеспечивает связь с тропомиозином. Тропонин, соединяясь с тропомиозином, образует комплекс, названный нативным тропомиозином. Этот комплекс прикрепляется к актиновым филаментам и придает актомиозину скелетных мышц позвоночных чувствительность к ионам Са (рис. 20.6). [c.650]

    Молекулярные структуры гладких мышц весьма сходны с соответствующими структурами поперечнополосатых мышц, но расположенпе саркомеров в них не дает характерной для поперечнополосатых мышц картины псчерченностп. Подобно скелетным мышцам, гладкие мышцы содержат молекулы а-актпнпна и тропомиозина, но не имеют тропониновой системы. Тем не менее сокращение гладких мышц, как и сокращение поперечнополосатых, регулируется попами Са .  [c.657]

    Как отмечалось, чувствительность актомиозиновой системы к ионам Са (т.е. потеря актомиозином способности расщеплять АТФ и сокращаться в присутствии АТФ при снижении концентрации ионов Са до 10 М) обусловлена присутствием в контрактильной системе (на нитях F-акти-на) белка тропонина, связанного с тропомиозином. В тропонин-тропомио-зиновом комплексе ионы Са связываются именно с тропонином. В молекуле тропонина при этом происходят конформационные изменения, которые, по-видимому, приводят к сдвигу всего тропонин-тропомиози-нового стержня и деблокировке активных центров актина, способных взаимодействовать с миозином с образованием сократительного комплекса и активной М -АТФазы. [c.658]

    Таким образом, ионы Са регулируют сократительные процессы в мышцах. По-видимому, это происходит при непосредственном участии тропонина и тропомиозина (см. с. 395). В отсутствие Са " тропинин в комплексе с тропомиозином ингибирует взаимодействие актина с миозиновыми мостиками. Кальци , поступивший в саркоплазму, связывается с тропонином и прекращает его ингибирующее действие. Следовательно, Са играет роль дерепрессора и переключает тонкую нить из неактивного в активное состояние. [c.398]


Смотреть страницы где упоминается термин Тропомиозин: [c.359]    [c.93]    [c.94]    [c.320]    [c.71]    [c.286]    [c.287]    [c.288]    [c.289]    [c.493]    [c.651]    [c.395]    [c.71]    [c.286]    [c.287]   
Общая органическая химия Т.10 (1986) -- [ c.578 ]

Биофизика (1988) -- [ c.395 ]

Принципы структурной организации белков (1982) -- [ c.97 ]

Биологическая химия (2002) -- [ c.436 ]

Органическая химия (1963) -- [ c.445 ]

Молекулярная биология клетки Том5 (1987) -- [ c.84 , c.85 , c.171 , c.173 ]

Биологическая химия Издание 3 (1960) -- [ c.419 ]

Биологическая химия Издание 4 (1965) -- [ c.443 ]

Химия полимеров (1965) -- [ c.0 ]

Химия и биология белков (1953) -- [ c.67 , c.107 , c.188 , c.189 ]

Конфирмации органических молекул (1974) -- [ c.382 ]

Белки Том 1 (1956) -- [ c.225 , c.226 ]

Биология Том3 Изд3 (2004) -- [ c.387 , c.388 ]

Химия биологически активных природных соединений (1970) -- [ c.73 , c.152 ]

Биохимия Издание 2 (1962) -- [ c.544 , c.547 ]

Биофизика Т.2 (1998) -- [ c.234 ]

Молекулярная биология клетки Т.3 Изд.2 (1994) -- [ c.265 ]

Биохимия человека Т.2 (1993) -- [ c.333 , c.334 , c.337 , c.338 , c.344 ]

Биохимия человека Том 2 (1993) -- [ c.333 , c.334 , c.337 , c.338 , c.344 ]

Биологические мембраны Структурная организация, функции, модификация физико-химическими агентами (2000) -- [ c.82 , c.85 ]

Биофизическая химия Т.2 (1984) -- [ c.217 , c.238 , c.274 ]

Биоэнергетика и линейная термодинамика необратимых процессов (1986) -- [ c.283 , c.291 ]

Цитоскелет Архитектура и хореография клетки (1987) -- [ c.14 , c.16 , c.30 , c.38 , c.40 , c.42 , c.50 , c.59 , c.65 , c.101 ]

Мышечные ткани (2001) -- [ c.14 , c.74 , c.115 , c.206 , c.221 ]

Молекулярная биология клетки Т.3 Изд.2 (1994) -- [ c.265 ]

Биологическая химия (2004) -- [ c.520 , c.521 , c.522 ]

Биохимия Т.3 Изд.2 (1985) -- [ c.261 , c.269 ]




ПОИСК





Смотрите так же термины и статьи:

Тропомиозин Тяжелого шарика метод

Тропомиозин Узел в цепи

Тропомиозин Уотсона Крика двойная спираль

Тропомиозин аминокислотный состав

Тропомиозин блокированный конец

Тропомиозин выделение

Тропомиозин групп

Тропомиозин изоэлектрическая точка

Тропомиозин как периодический белок

Тропомиозин коэффициент диффузии

Тропомиозин молекулярный вес

Тропомиозин распределение функциональных

Тропомиозин содержание спиралей

Тропомиозин сокращение мышц

Тропомиозин сольватация

Тропомиозин структура

Тропомиозин характеристическая вязкость

Тропомиозин циклическая структура

Тропомиозин, и промежуточные филаменты

Тропонин и тропомиозин опосредуют регуляторное действие ионов кальция на мышечное сокращение

Тропонин и тропомиозин осуществляют Са2-зависимую регуляцию мышечного сокращения



© 2025 chem21.info Реклама на сайте