Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мышечные поперечные мостики

Рис. 2. Тонкая структура сократительного аппарата мышечных клеток. Поперечные мостики нанесены только на небольшой части рисунка. Рис. 2. <a href="/info/1590407">Тонкая структура сократительного аппарата</a> мышечных клеток. <a href="/info/1435015">Поперечные мостики</a> нанесены только на небольшой части рисунка.

Рис. 94. Изменение силы Гэ(г), развиваемой поперечным мостиком (ПМ) при его смещении (г) от положения равновесия (1), кинетическая схема переходов ПМ между различными состояниями (2) и схема нагруженного мышечного волокна (3). Рис. 94. Изменение силы Гэ(г), развиваемой <a href="/info/1435015">поперечным мостиком</a> (ПМ) при его смещении (г) от <a href="/info/526166">положения равновесия</a> (1), <a href="/info/829257">кинетическая схема</a> переходов ПМ между различными состояниями (2) и схема нагруженного мышечного волокна (3).
    Расслабление мышцы (релаксация) происходит после прекращения поступления двигательного нервного импульса. При этом проницаемость стенки цистерн саркоплазматического ретикулума уменьшается, и ионы кальция под действием кальциевого насоса, использующего энергию АТФ, уходят в цистерны. Их концентрация в саркоплазме быстро снижается до исходного уровня. Снижение концентрации кальция в саркоплазме вызывает изменение конформации тропонина, что приводит к фиксации молекул тропомиозина в определенных участках актиновых нитей и делает невозможным образование поперечных мостиков между толстыми и тонкими нитями. За счет упругих сил, возникающих при мышечном сокращении в коллагеновых нитях, окружающих мышечное волокно, оно при расслаблении возвращается в исходное положение. [c.133]

    Интерес ряда исследователей направлен на то, чтобы выяснить, не заключены ли наиболее важные детали механизма мышечного сокращения в актине . Например, высказывалось предположение, что гидролиз АТР вызывает укорочение на несколько процентов сразу 15—20 молекул актина, что достаточно для общего перемещения на 10 нм, требуемого для сокращения. Согласно другой точке зрения, поперечные мостики не являются частью сократительного механизма, а служат лишь своего рода защелками . Известно, что мышца сокращается, почти не меняя объема, и поэтому все, что вызывает утолщение саркомера, будет приводить к его сокращению. Высказывалось предположение, что после гидролиза АТР отрицательно заряженные фосфатные группы связываются с нитями актина и что возникающее при этом электростатическое отталкивание вызывает поперечное утолщение саркомера . В ряде работ еще раз подчеркивалась возможность того, что энергия распада АТР трансформируется (резонансный переход) в энергию колебаний амидных связей в а-спиральных участках миозина" Эта колебательная энергия может передаваться на большие расстояния по имеющимся в белках сеткам водородных связей и каким-то образом используется в сократительном процессе. Хотя эта идея может показаться несколько искусственной, она напоминает нам, что миозиновые стержни, равно как и тонкие нити, нельзя представлять себе как инертный материал. Мы не знаем сейчас, в какой части, системы находятся сократительные пру- [c.417]


    В продвижении актиновых нитей вдоль миозиновых, по данным Э. Хаксли, важную роль играют временно замыкающиеся между нитями поперечные мостики, которые являются головками миозиновых молекул. Итак, чем большее число мостиков прикреплено в данный момент к актиновым нитям, тем больше сила мышечного сокращения. [c.658]

    Каждый цикл сокращения (образование, поворот и разрыв мостика) требует расходования одной молекулы АТФ в качестве источника энергии. Учитывая, что во всей мышце во время ее сокращения возникает огромнейшее количество поперечных мостиков, затраты АТФ на энергообеспечение мышечной деятельности очень велики. [c.133]

    При активации саркомера актиновые и миозиновые нити сцепляются с помощью поперечных мостиков, создаваемых головками миозина. Решетки нитей скользят, вдвигаясь одна в другую. Благодаря этому происходит сокращение волокна. Саркомер сокращается приблизительно на 20%. Мостики в процессе сокращения саркомера многократно прикрепляются, создают усилие, сгибаются, продвигая нить вдоль нити, и открепляются. Энергия для работы мостиков поставляется АТФ, На рис. 2.39 показан элементарный цикл мышечного сокращения, сопровождаемого изменением состояния головки. [c.72]

    Рассмотрим миофибриллу мышечной клетки позвоночного животного (рис. 12-1). Она состоит из протофибрилл двух типов — тонких и толстых, в миофибрилле существует система поперечных мостиков, соединяющая два ряда протофибрилл. Мостики рас- [c.213]

    Процесс мышечного сокращения нельзя свести к укорочению толстых или тонких нитей, так как их длина существенно не меняется при умеренном укорочении мышечных волокон. Вместе с тем в ходе мышэчного сокращения длина саркомеров уменьшается и решетки толстых и тонких нитей вдвигаются друг в друга. Если укорочение волокна невелико, гексагональное расположение нитей сохраняется нити скользят относительно друг друга. Сила сокращения возникает при взаимодействии толстых и тонких нитей, заключающемся в замыкании поперечных мостиков. Одно из решающих доказательств такого механизма мышечного сокращения было получено при сопоставлении величины напряжения мь шечного волокна со степенью перекрывания толстых и тонких нитей [Гордон, Хаксли А., Юлиан, 19661. Изолированное мышечное волокно растягивали так, что вначале толстые и тонкие нити не перекрывались (состояние 1 на рис. 92), и затем определяли изометрическое напряжение сокращения при разных длинах саркомера. Было установлено, что напряжение возрастает линейно со степенью перекрывания нитей (рис. 93) и достигает максимального значения в состоянии 2, когда участки толстых нитей, содержащие поперечные мостики, полностью перекрыты тонкими нитями. При продолжении укорочения саркомера до момента схождения концов тонких нитей напряжение практически не меняется, поскольку число способных к нормальному замыканию мостиков в районе перекрывания остается неизменным. В ходе дальнейшего сокращения (состояние 3) напряжение начинает резко снижаться вследствие того, что послё прохождения дальше центра толстых нитей перемещение тонких нитей приводит уже к появлению участков двойного перекрывания с неправильной ориентацией мостиков. [c.219]

    Замедление гидролиза АТФ активное растяжение. Кор-тин и Дэвис [19,20] показали, что при низких скоростях растяжения скорость гидролиза АТФ значительно ниже, чем при изометрическом сокращении. Кроме того, они заключили, что в процессе растяжения поперечные мостики могут образовываться и сохранять силу в пределах смещения без расщепления АТФ. В связи с этим они отмечают, что любая теория мышечного сокращения должна объяснить способность мышцы развивать напряжение, даже превышающее Ро, и поддерживать его на больших расстояниях при растяжении в условиях крайне слабого гидролиза АТФ [47]. Однако уравнения (12.12) и (12.13) ясно показывают, что если мышца растянута в условиях тетанической стимуляции, т. е. если V становится отрицательной, то Р>Ро (можно считать, что в этих условиях Л Ло, поскольку, как показано в приложении к этой главе, регуляция по сродству означает, что Ао — предельное значение) и 1г<.1го-В принципе, если бы феноменологические коэффициенты и сродство оставались в основном постоянными в таких экстремальных условиях, то 1г должен был бы обратиться в нуль при достаточно высоком значении Р, а при еще больших значениях — стать отрицательным. Другими словами, мог бы начаться синтез АТФ. Такое экстремальное поведение никогда не наблюдалось. [c.290]

    Б. При мышечном сокращении в каждом цикле возникновения и разрыва поперечных мостиков актин вначале прочно связывается, а затем освобождается точно так же Са вначале прочно связывается, а потом освобождается в процессе активного транспорта. [c.437]

    Сопоставление соотношений (XXV.2.1) и (XXV.5.9) позволило провести оценку параметров цикла мостика /, 8, f i, 2- Для портняжной мышцы лягушки Pq = = 3 10 дин/см , а/Ро = 0,25 гамаке = 1>5 10 см/сек при 0°С. Считая, что в мышечном слое толщиной в половину саркомера с поперечным сечением 1 см число мостиков ао = 10 , энергия гидролиза одной молекулы АТФ при физиологической ионной силе 8 = 3-10 эрг и полагая, что значение положительной работы в цикле / 8 = 8, получим / = 3 10 дин, 8 = 10 см, ki = 50 сек , = 150 сек . [c.245]

    В. Внезапное и резкое расслабление мышечного волокна при освещении его лазерной вспышкой происходит потому, что освобожденный АТР связывается с миозиновыми головками и приводит к диссоциации их комплекса с актином. Разрыв всех поперечных миозиновых мостиков позволяет актиновым филаментам вернуться в исходное, покоящееся состояние. [c.437]


    В то время как свойства белковых ансамблей, обнаруженных в мышцах, описаны со многими интересными подробностями (гл. 4, разд. Е,1), остается открытым наиболее важный вопрос каким образом мышечная машина использует свободную энергию гидролиза АТР для совершения механической работы На основании данных электронной микроскопии и дифракции рентгеновских лучей было установлено, что в состоянии окоченения все поперечные мостики, образуемые мнозиновыми головками, оказываются прочно прикрепленными к тонким нитям актина. Добавление же АТР приводит к мгновенному отсоединению мостиков от тонких нитей. В расслабленной мышце тонкие нити могут свободно двигаться на участках, прилегающих к толстым нитям, что придает мышце свойство слабо натянутой резиновой полоски. Однако активация мышцы под действием нервного импульса, сопровождаемая освобождением ионов кальция (гл. 4, разд. Е,1), заставляет тонкие нити скользить между толстыми, приводя в результате к укорочению мышцы. [c.415]

    Некоторые свойства белков можно объяснить только в свете их функции, т. е. их вклада в более сложную деятельность. Одной из немногих систем, для которых удалось установить корреляцию между функцией белков и функцией органа, является скелетная мышца. Клетка мышцы активируется нервными импульсами (мембранно-направленными сигналами). В молекулярном аспекте мышечное сокращение основано на циклическом образовании поперечных мостиков за счет периодических взаимодействий между миозином, актином и Mg-ATP. Ионы Са и кальцийсвязывающие белки являются посредниками между нервными импульсами и эффекторами. Медиация ионами Са " ограничивает скорость реакции на сигналы включение — выключение и предохраняет от сокращений без сигнала. Напротив, отдельные осцилляции маховых мышц крылатых насекомых контролируются не ионами или подобными низкомолекулярными соединениями, а самими сократительными белками. Эго делает возможными очень быстрые периодические сокращения, которые, будучи инициированы (ионами Са +), протекают сами по себе. В заключение отметим, что исследования мышцы показывают, что в функционировании белка отчетливо проявляется связь между деталями молекулярного строения и деятельностью всего организма. [c.292]

    Мышечные клетки содержат два сорта белковых волокон толстые волокна, построенные из миозина, и тонкие — из актина (рис. 2). Эти волокна лежат параллельно продольной оси клетки и образуют раздельные системы, заходяшие более или менее глубоко во взаимное зацепление в зависимости от степени сокращения мышцы [61, 62]. Короткие поперечные мостики связывают между собой обе системы. Типичная картина наблюдается в поперечнополосатых мышцах. Тонкие волокна актина присоединены к так называемым 2-полосам, также состоящим из белка. Миозиновые волокна образуют регулярные А-полосы, расположенные на равных расстояниях между 2-полосами. Сеть образующих А-полосы мио-зиновых волокон пронизана тонкими волокнами актина (рис. 2, в). [c.285]

    Деполяризация мембран цистерн приводит к высвобождению кальция и началу мышечного сокращения. Кальций связывается с субъединицей С тропонина. Это изменяет конформацию всей молекулы тропонина — субъединица I перестает мешать взаимодействию актина с миозином изменение конформации субъединицы Т передается на тропомиозин. Далее тропомиозин поворачивается на 20° и открывает закрытые ранее центры в актине для связывания с миозином. Головка миозина, которая в покое представляет собой комплекс М+АДФ+Рн, присоединяется к актину перпендикулярно, причем актин обладает к этому комплексу большим сродством (образование поперечных мостиков). Присоединение актина вызывает быстрое освобождение АДФ и Рн из миозина. Это приводит к изменению конформации, и головка миозина поворачивается на 45° (рабочий ход). Поворот головки, связанной с актином, вызывает перемещение тонкой нити относительно миозина. К головке миозина вместо ушедших АДФ и Рн вновь присоединяется АТФ, образуя комплекс М + АТФ. Актин обладает к нему малым сродством, что вызывает отсоединение головки миозина (разрыв поперечных мостиков). Она вновь становится перпендикулярно тонкой нити. В головке миозина, не связанной с актином, происходит гидролиз АТФ. Вновь образуется комплекс АДФ + Рн -Ь миозин, и все повторяется. После прекращения действия двигательного импульса Са " " с помощью Са2+-зависимой АТФазы переходит в саркоплазматический ретикулум. Уход кальция из комплекса тропонина приводит к смещению тропомиозина и закрытию активных центров актина, делая его неспособным взаимодействовать с миозином, - мышца расслабляется. [c.460]

    Во время мышечного сокращешм между толстыми и тошсими нитями миофибрилл возникают поперечные мостики, или спайки. [c.131]

    Мышечное сокращение происходит под воздействием двигательного нервного импульса, представляющего собой волну повышенной мембранной проницаемости, распространяющуюся по нервному волокну. Эта волна повышенной проницаемости передается через нерв-но-мышечный синапс на Т-систему саркоплазматической сети и в конечном счете достигает цистерн, содержащих ионы кальция в большой концентрации. В результате значительного повышения проницаемости стенки цистерн (это тоже мембрана ) ионы кальция выходят из цистерн и их концентрация в саркоплазме за очень короткое время (около 3 мс) возрастает примерно в 1000 раз. Ионы кальция, находясь в высокой концентрации, присоединяются к белку тонких нитей - тропонину - и меняют его пространственную форму (конформацию). Изменение конформации тропонина, в свою очередь, приводит к тому, что молекулы тропомиозина смещаются вдоль желобка фибриллярного актина, составляющего основу тонких нитей, и освобождают тот участок актиновых молекул, который предназначен для связывания с миозиновыми головками. В результате этого между миозином и актином (т. е. между толстыми и тонкими нитями) возникает поперечный мостик, расположенный под углом 90°. Поскольку в толстые и тонкие нити входит большое число молекул миозина и актина (около 300 в каждую), то между мышечными нитями образуется довольно большое количество поперечных мостиков, или спаек. На электронной микрофотографии (рис. 15) хорошо видно, что между толстыми и тонкими нитями имеется большое количество поперечно расположенных мостиков. [c.131]

    Модель скольжения нитей прошла длительную опытную проверку и наиболее убедительно была подтверждена данными прямых методов электронной микроскопии и рентгеноструктурного анализа. Они показали, что укорочение мышцы действительно не сопровождается изменениями собственных длин филаментов и характера их упаковки в саркомере. Развиваемая мышцей сила оказалась пропорциональной степени взаимного перекрывания миозиновых и актиновых нитей и тем самым обусловленной их взаимодействиями на всем перекрывающемся участке. С появлением электронной микроскопии высокого разрешения (вторая половина 1960-х годов 20-40 А) удалось увидеть множество боковых отростков, образующих поперечные мостики между толстыми филаментами и расположенными на расстоянии 0,013 мкм ( 130 А) от них тонкими филаментами. Стало очевидно, что относительное перемещение нитей совершается с помощью этих мостиков. Они принадлежат миозину и работают, используя энергию гидролиза АТР, подобно миниатюрным веслам. О том, что АТР присутствует в мышечных волокнах, было известно с 1929 г., поскольку именно из мышц он был впервые выделен К. Ломаном. То, что миозин катализирует гидролиз АТР, т.е. является АТРазой, установили В.А. Энгельгардт и М.Н. Любимова в 1939 г. [441]. Это открытие явилось прямым указанием на источник энергии для сокращения мышц и роль миозина в использовании энергии. [c.121]

    Использование электронной микроскопии с высоким разрешением позволило понять ультраструктурную основу этого взаимодействия на толстых филаментах удалось увидеть множество боковых отростков, образующих поперечные мостики между толстыми филаментами и расположенными на расстоянии 13 нм от них тонкими филаментами (рис. 10-6). В настоящее время известно, что при сокращении мышцы толстые и тонкие нити перемещаются относительно друг друга именно с помошью этих поперечных мостиков, которые работают циклично, подобно рядам миниатюрных весел. Взаимодействующие белки тонких и толстых филаментов были вьщелены и охарактеризованы, получив соответственно названия актин (этот белок содержится в цитоскелетных структурах в наибольших количествах) и миозин (он обычно встречается в ассоциации с актином в клеточных структурах, ответственных за подвижность). Практически все, что мы знаем сейчас об этих двух важных белках, имеющихся почти во всех эукариотических клетках, является результатом изучения актина и миозина, экстрагированных из мышечной ткани. [c.78]

    Что можно сказать о расположении комплексов гликолитических ферментов на мышечных филаментах Тонкие и толстые нити миофибрилл, образованные преимущественно актином и миозином соответственно, выглядят в поперечном сечении миофибрилл упакованными в гексагональную решетку. Актиновая нить представляет собой двойную спираль, образованную глобулярными единицами (молекулами С-актина), с периодом около 36,5 нм [41]. Миозиновая нить образована двенадцатью поднитями, упакованными вдоль основной оси нити по гексагональному типу. Поперечный разрез нити имеет вид треугольника с девятью поднитями на поверхности и тремя в центре. Расположение поперечных мостиков на поверхности миозиновой нити соответствует приблизительно двухзахо-довой 6/1-спирали [60]. [c.182]

    Таким образом, кинетическая теория позволила объяснить феноменологическое уравнение Хилла (11.6). Кроме того, эмпирические константы, входящие в это уравнение, приобрели четкий физический смысл. Например, величина Р JN о = afs представляет собой максимальную силу, которую может развивать одно мышечное волокно (его полу-саркомер), когда все поперечные мостики находятся в тянущем состоянии. В выражениях (11.17) и (11.18) величина кгб является максимальной скоростью укорочения полусаркомера (скольжения нитей) при Pj = О, а произведение 2Nk2O = V м — скоростью укорочения ненагружен-ной мышцы. [c.225]

    В тонических мышцах весь процесс сокращения, вплоть до расслабления, зависит от уровня мембранного потенциала (МП). У них нет рефрактерности, медленнее происходит деполяризация, меньше площадь контакта СР с Т-системой, менее быстро идет выброс Са " " из депо, повышена вязкость саркоплазмы. Перемещение поперечных мостиков (головок миозина) в толстых филаментах происходит в тонических мышечных волокнах в 15 раз медленнее, чем в фазных мала в них активность миозиновой АТРазы, медленнее происходят связывание ионов Са в СР и диссоциация поперечных мостиков, падение напряжения. Более инертные связи тонких и толстых филаментов обеспечивают феномен запирания ( at h, spemung), т.е. поддержания длительного высокого напряжения без признаков утомления. [c.29]

    Белки миофибрилл можно выделять из мышц и изучать в чистом виде. Из них in vitro удается получать миозиновые и актиновые нити. Миозиновые и актиновые нити можно также выделить из мышечной ткани после осторожного разрушения клеточных мембран и миофибрилл. Можно получать также актомиозиновые комплексы, которые, как мы уже отмечали, образуются в результате присоединения головок миозина к молекулам О-актина в актиновых нитях (поперечные мостики). Актомиозиновые волокна in vitro при определенных условиях могут сокращаться. Использование таких отдельных систем оказалось чрезвычайно полезным для изучения механизма мышечного сокращения. [c.521]


Смотреть страницы где упоминается термин Мышечные поперечные мостики: [c.285]    [c.285]    [c.260]    [c.218]    [c.239]    [c.266]    [c.160]   
Биохимия Том 3 (1980) -- [ c.415 ]




ПОИСК





Смотрите так же термины и статьи:

Поперечные мостики



© 2025 chem21.info Реклама на сайте