Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Активные угли. Методы получения и свойства

    Применение указанных вариантов процесса экстрагирования определяет экономические показатели установок очистки хвостовых газов при получении элементарной серы. Активный уголь используется в таких процессах в качестве катализатора реакции окисления сероводорода сернистым ангидридом. Этот метод в настоящее время является перспективным [П5]. Хвостовые газы после сероулавливателя направляются на доочистку от сероводорода в конвертор-экстрактор, заполненный активным углем. В слое угля проходит реакция окисления сероводорода, в результате которой образуется элементарная сера в жидком виде, откладывающаяся на угле. Накапливающаяся на угле сера препятствует контакту очищаемого газа с поверхности активного угля и процесс очистки прекращается. Для получения товарной серы и восстановления адсорбционных и каталитических свойств активного угля необходимо элементарную серу извлечь из угля. Процесс извлечения состоит в экстрагировании элементарной серы различного типа растворителями. Растворитель должен обладать рядом свойств, специфичных для данного производства. Он должен быть взрывобезопасен, не горюч, не токсичен, иметь высокую растворимость по элементарной сере, обладать невысокой стоимостью, не давать побочных продуктов на активном угле. [c.144]


    Относительно формирования пористой структуры и свойств углеродных сорбентов необходимо отметить следующее. Так как способность активных углей поглощать газы, пары и растворенные вещества обусловлена развитой поверхностью с большим числом активных центров и значительным объемом микропор, то в основу их технологии заложены принципы формирования пористой структуры и поверхности, обеспечивающие получение продуктов с указанными свойствами. Так, в производстве активных углей из растительного сырья, составляющих преобладающую часть промышленных активных углей, главная роль принадлежит процессу активации (кроме структуры исходного сырья — древесный уголь по ГОСТ 7657—74 и методов его подготовки) [29, 85]. Активирование проводят для удаления с поверхности [c.69]

    Продолжается активное развитие ряда фугих направлений коллоидно-химической науки и смежных областей знания учения об аэрозолях (играющего важную роль в создании методов защиты окружающей среды от загрязнения) физикохимии электроповерхностных явлений, включая коллоидно-химические аспекты борьбы с коррозией термодинамики поверхностных явлений и фазовых равновесий в дисперсных системах, теории электрокинетргаеских и оптических свойсгв коллоидных дисперсий изучения коллоидных свойств дисперсий ВМС (включая методы получения полимерных покрытий, особенности латексной полимеризации) исследований специфических коллоидно-поверхностных эффектов в кристаллах особенностей смачивания и других поверхностных явлений в высокотемпературных системах. Энергично развивается физико-химическая механика природных дисперсных систем (глинистые минералы, уголь, торф и др.) конструкционных и строительных материалов (стали, сплавы, керамика, материалы на основе минеральных вяжущих веществ) контакта твердых поверхностей, трения, смазывающего действия. [c.14]

    В опытах А. М. Гурвича и Т. Б. Гапон [174] этим методом весьма просто осуществлена очистка сульфатов цинка и кадмия от следов меди, железа, никеля и кобальта — металлов, которые даже в небольших концентрациях оказывают сильное влияние на оптические свойства люминофоров, полученных на основе сульфидов цинка и кадмия. Оказалось возможным удалить из растворов сульфатов цинка и кадмия одновременно железо, медь, никель и кобальт путем фильтрования растворов через колонку, содержащую в верхнем слое активный уголь марки ДАУХ ( древесный активированный уголь для хроматографии ) и диметилглиоксим в отношении 10 1, а в нижнем слое — один уголь. Нижний слой необходим для задержания в колонке частично растворимого в воде диметилглиоксима (0,04% при 18° С). [c.218]


    Упомянутые выше опыты по получению ионообменных углей были направлены в общем на то, чтобы повысить стабильность природного сырья, способного к ионному обмену. Другая серия опытов по искусственной гумификации была направлена на увеличение числа активных групп (отчасти при этом протекает поликонденсация) или на введение активных групп иной природы. Различные органические вещества дерево, торф, бурый уголь, каменный уголь (вплоть до антрацита), —обрабатывали водоотнимающими или окисляющими средствами. В зависимости от исходных веществ и специальных рабочих условий получающиеся продукты наряду со свойствами активных углей обладают более или менее высокой способностью к ионному обмену. При обработке крепкой серной кислотой наряду с искусственной гумификацией протекает частичное сульфирование. Так как введенные сульфогруппы диссоциированы значительно сильнее, чем образующиеся при гумификации СООН - и ОН"-группы, при таком методе обработки значительно повышается способность к ионному обмену. Все введенное количество серы связано в форме [c.54]

    На примере этилового эфира олеиновой кислоты изучена зависимость, селективности и глубины гидрирования от состава и способа приготовления ряда цинксодержащих катализаторов хромита цинка, чистой окиси цинка окиси цинка, промотированной добавками окислов железа, аммония, хрома, марганца и меди. Изучена зависимость каталитических свойств окиси цинка от способа ее приготовления, природы исходных соединений, присутствия посторонних ионов, условий прокаливания углекислого цинка. Исследован ряд катализаторов, полученных осаждением окиси цинка на носителях (активированный уголь, пемза, окись алюминия). Наилучшие результаты получены с катализатором ZnO/AbOa. Подобрана марка окиси алюминия и соотноще-ние компонентов, обеспечивающие получение наиболее активного и селективного Кт. Добавки железа, марганца и хрома в зависимости от их концентрации могут повыщать и снижать активность и селективность окиси цинка. Добавка меди резко повыщает активность окиси цинка и одновременно снижает ее селективность практически до нуля. Обнаружена уникальная устойчивость цинкокисных Кт. к отравлению галоид- и серусодержащими соединениями. На основании проведенных исследований разработан промышленный метод получения ненасыщенных спиртов селективным гидрированием кашалотового жира. Приведен литературный обзор по селективному гидрированию эфиров ненасыщенных кислот. [c.376]

    ВИНИЛАЦЕТАТ СНзСООСН=СНг, мол. в. 80,09— бесцветная жидкость, замерзающая ниже —84° т. кип. 73 й 0,9342 1,3958 г <> 0,432 спуаа, в воде при 20° растворяется 2,5% В. т. всп. от —5 до —8° (в открытом сосуде). В промышленности В. иолучают взаи.модействием ацетилена с уксусной кислотой в присутствии катализаторов СН=СН -Ь -f СНзСООН СНзСООСН=СН2 (см. Кучерова реакция). Известны жидкофазный и парофазный методы получения В. По первому из них реакция протекает при 60° в присутствии солей ртути по второму — реакционную смесь пропускают над ацетатом цинка, нанесенным на активный уголь или силикагель. Очиш ают В. перегонкой с водяным паром или под вакуумом в качестве ингибиторов применяют серу, резинат меди или дифениламин. Наиболее важным свойством В. является его способность к полимеризации и сополимеризации с другими виниль-ными производными нри этом образуются высоко-молекулярпые полимеры, применяющиеся в пром-сти (см. По.гивинилацетат). [c.284]

    Для исследования были приготовлены образцы катализаторов с различными степенями заполнения поверхности, точно по рецепту, указанному в работе Клячко-Гурвича и Кобозева , в сосуде, изготовленном по чертежу, приведенному в диссертации Клячко-Гурвича. Уголь готовился из чистого сахара, посредством его двукратной перекристаллизации из абсолютного спирта с последующим сжиганием в платиновой чашке при 700— 800°. Определение поверхности приготовленного угля по методу, применявшемуся в указанных работах (адсорбция иода), дало величину 94 м /г, что близко к величине площади 86 м /г, полученной Клячко-Гурвичем и Кобозевым. Это позволяет считать, что нам в достаточной степени удалось воспроизвести уголь, применявшийся указанными авторами в качестве носителя. Уголь пропитывали эфирными растворами пентакарбонила железа (Кальбаум) разных концентраций и подгергали обработке, совпадающей с указанной в цитированных работах.Приготовленные таким образом образцы катализаторов показали активность по отношению к реакции синтеза аммиака, близкую к наблюдавшейся Клячко-Гурвичем и Кобозевым. Для исследования магнитных свойств катализаторы пассивировали по описанному ранее методу , выгружали из сосуда и растирали в тонкий порошок. [c.207]

    При получении активных углей свойства их можно регулировать выбором соответствующего сырья, метода активирования, изменением продолжительности и условий активирования при этом на определенные свойства может влиять целый ряд условий. Так, число и распределение размеров пор зависят, в частности, от природы сырья, вида и условий процесса активирования. В процессе химического активирования некарбонизо-ванного исходного материала получают уголь с высокой активностью и относительно широкими микропорами, однако он загрязнен неорганическими добавками, используемыми в процессе изготовления. Если тот же исходный материал, например древесину, вначале подвергнуть пиролизу, а затем активировать водяным паром, можно получить продукт, содержащий в основном тонкие поры и не имеющий посторонних примесей. [c.36]



Смотреть страницы где упоминается термин Активные угли. Методы получения и свойства: [c.46]    [c.284]    [c.50]   
Смотреть главы в:

Сорбционная очистка воды -> Активные угли. Методы получения и свойства




ПОИСК





Смотрите так же термины и статьи:

Активность свойства

Активные угли

КСМ, активном угле GKT

Метод активные

Метод свойствам

Уголь Угли активный

получение и свойства



© 2025 chem21.info Реклама на сайте