Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Микроскопическое изучение термических свойств

    МИКРОСКОПИЧЕСКОЕ ИЗУЧЕНИЕ ТЕРМИЧЕСКИХ СВОЙСТВ точки ПЛАВЛЕНИЯ. НАГРЕВАТЕЛЬНЫЕ СТОЛИКИ [c.229]

    Изучение природы сплавов, их особенностей и свойств, а также свойств чистых металлов — область науки, называемой металловедением. В металловедении широко используются три метода исследования термический анализ, микроскопическое исследование и рентгеноструктурный анализ. [c.271]


    Построение реальных диаграмм состояния сводится к определению опытным путем температур фазовых превращений, характера и состава фаз, находящихся в данной системе в равновесии при различных температурах. Эти исследования производятся различными методами химического и физико-химического анализа — термическим, микроскопическим, электронно-микроскопическим, рентгенографическим, электронографическим, локальным рентгеноспектральным и другими методами анализа. Иногда используют также дилатометрические исследования, изучение электросопротивления, твердости и других свойств материалов. [c.281]

    Сплавами называются гомогенные смеси металлов в расплавленном состоянии и продукты их затвердевания. Жидкие сплавы — это преимущественно растворы металлов один в другом. Однако в сплавах могут содержаться также и химические соединения в расплавленном состоянии. Природа затвердевших сплавов может быть очень разнообразной. Они могут быть квазигомогенными (см. ниже) или совершенно негомогенными, могут состоять из твердых растворов или из соединений металлов между собой или из комбинаций двух последних типов. Металлы,-образующие сплав, при затвердевании его могут выделяться таким образом, 1Т0 получается более или менее грубозернистая смесь из отдельных составных частей выделение металлов из расплава может при затвердевании и не наступить или наступить лишь частично металлы при охлаждении иногда могут вступать между собой в такие соединения, которые оказываются неспособными к существованию нри более высокой температуре это может происходить частично или полностью, подобные соединения могут вновь образовывать твердые растворы и т. д. Наблюдаемое в этой области разнообразие настолько велико, что изучение природы сплавов, их особенностей и свойств, а также свойств чистых металлов выделилось в особую отрасль знания — металлографию. Для исследования строения металлов и сплавов металлография пользуется главным образом тремя методами во-первых, термическим анализом, который подробнее будет рассмотрен ниже этот метод дополняется вторым, вспомогательным — микроскопическим исследованием шлифованных и полированных и затем соответствующими способами протравленных металлических поверхностей-, в последнее время возник третий метод металлографического исследования — рентгеноструктурный анализ. [c.606]

    Таким образом, изменение механических свойств при тепловом старении поликарбоната при температурах ниже стеклования в значительной степени обусловлено изменением его структуры. Эти изменения обусловлены протеканием физических процессов. Так, было установлено [243—245], что надмолекулярная структура, сформировавшаяся в поверхностных слоях образцов поликарбоната, полученных литьем под давлением, претерпевает изменения при их последующей термообработке. При термообработке размеры сферолитов увеличиваются до некоторого максимального размера, после чего вновь уменьшаются. Начало уменьшения размеров сферолитов совпадает с началом повышения механических характеристик. Изучение изменения характера надмолекулярной структуры и механических свойств поликарбоната, подвергнутого дополнительному прогреву показало [246], что термическая обработка образцов полимера в течение 36-10 с при 383 К в различных средах (воздух, масло МС-20, кремнийорганическая жидкость) приводит к улучшению ряда механических показателей (модуля упругости при сжатии, растяжении и изгибе). Улучшение механических показателей является следствием перестройки макромолекул при тепловой обработке поликарбоната. Микроскопические исследования показали, что по мере повышения температуры и увеличения длительности действия ИК-излучения происходит также изменение надмолекулярных структур. Структурные образования становятся более мелкими и однородными по всему сечению, при этом плотность увеличивается. [c.169]


    Изучению кислородных соединений хрома посвящена работа Т. В. Роде [25]. Автор изучи.п физико-химическую природу, свойства, а также взаимные переходы кислородных и гидроокисных соединений хрома. Окислы хрома являются чрезвычайно сложными и своеобразными соединениями. В результате применения химических, микроскопических и физико-химических методов анализа (дифференциально термического с параллельным учетом объема выделяющихся газов, термогравиметрического и рентгеновского и построения диаграмм состав — температура) был решен ряд спорных вопросов химии окислов и гидроокислов хрома. Установлено число, состав и природа индивидуальных соединений и выявлено влияние температуры, времени нагревания и давления на природу различных фаз. Впервые детально изучена система хромовый ангидрид — окись хрома, дана характеристика промежуточных соединений, образующихся при термическом разложении хромового ангидрида. Ряд авторов [26—30] нашел при термической диссоциации хромового ангидрида только два или четыре промежуточных окисла, для которых даются различные составы, без уточнения их физико-химической природы. Они полагают, что при этом не получаются соединения определенного стехиометрического состава, а образуются два ряда непрерывных твердых растворов между составами СгОз.в — СгОз.з и СгО д— СгО ,,. Уточнение физико-химиче- [c.24]

    Несомненно также, что и ранее предложенные модели будут совершенствоваться. Так, глобулярная модель может быть развита и использована в нескольких вариантах а) модель касающихся глобул б) модель сросшихся глобул в) модель пространственной сетки цепей глобул г) агрегатов касающихся или сросшихся глобул. Варианты а) и в) описаны выше, более подробно — в работах [1, 72] в виде правильных упаковок и интерполяционных квазиупаковок. Однако более точное описание структуры лиогелей, процессов их старения, термического и гидротермального спекания ксерогелей, более детальный анализ механических и электрических свойств, а также теплопроводности корпускулярных структур может быть сделан на основе модели случайно упакованных глобул, причем в моделях правильных и случайно упакованных глобул должно быть учтено их срастание и агрегирование. Необходимо отметить, что такое уточнение требует экспериментального изучения неоднородности упаковки частиц в реальных системах и определения дополнительных параметров структуры, например функции распределения по числам касаний, относительной степени срастания, относительного размера агрегатов и соответствующего введения этих параметров в модель. Подходы к решению этих задач в некоторых случаях намечены. Например, трудоемким методом шлиф-срезов изучена неоднородность геометрического строения некоторых систем 84] в работах Щукина и Конторович [22] оптическими методами удалось определить размер агрегатов глобул в гидрогелях степень срастания можно оценить по соотношению геометрической поверхности глобул (определенной электронно-микроскопическим методом) и доступной для адсорбата поверхности (измеренной методом БЭТ), если точность обоих определений достаточно велика. Более или менее ясны и принципы моделирования этих систем. Реализация этих возможностей — вероятно. дело ближайшего будущего. [c.271]

    До недавнего времени средами, пригодными для изучения фосфоресценции при комнатной температуре, считались лишь некоторые неорганические стекла с низкой температурой плавления, из которых описанная выше система с борной кислотой, по-видимому, является наилучшей. Однако стекло с борной кислотой легко портится, оно хрупко и гигроскопично, а тонкие образцы его легко трескаются, если они не отожжены с принятием необходимых мер предосторожности. Высокая температура (240°), требующаяся для получения этих стекол, не позволяет их использовать для многих соединений, претерпевающих термическое разложение. Стекло плохо пропускает ультрафиолетовый свет (поглощение становится очень сильным ниже 3500 А). Оптические свойства стекол оставляют желать много лучшего, гигроскопичность приводит к постепенно усиливающейся мутности образцов. Кроме того, стекло с борной кислотой не поддается механической обработке и полировке. В поисках материала с лучшими свойствами мы вводили некоторые ароматические вещества в различные полимеры полиметилмета-крилат, полистирол, аллилдигликолькарбонат и различные сополимеры этих соединений. Обычные полимеры с линейной цепью проявляют свойства, сходные со свойствами жидких сред фосфоресценция в них отсутствует, если образец не охлажден до низких температур. Однако те образцы, у которых имеются развитые поперечные связи, проявляют способность к сильной фосфоресценции даже при комнатной температуре и при более высоких температурах [146]. В случае хризена, пицена, 1,2 5,6-дибензан-трацена и трифенилена в полиметилметакрилате с поперечными связями можно визуально наблюдать триплет-триплетное поглощение, обусловливающее появление определенной окраски при сильном освещении. Ясно, что микроскопическая жесткость имеет большее значение для дезактивации возбужденных состояний, чем макроскопическая жесткость. Возможность появления фосфоресценции хорошо коррелирует с температурой фазового перехода в стекле, при котором нарушаются поперечные связи, закреплявшие возбужденную молекулу растворенного вещества в трехмерном ящике и способствовавшие ее устойчивости. С другой стороны, у пластиков без поперечных связей макроскопическая жесткость обусловлена переплетением длинных полимерных цепей на микроскопическом же уровне могут иметь место частичное поступательное движение и вращение, приводящие к дезактивации триплетного состояния при соударениях по такому же механизму, как и в жидких средах [209]. [c.86]



Смотреть страницы где упоминается термин Микроскопическое изучение термических свойств: [c.754]    [c.419]    [c.415]   
Смотреть главы в:

Физические методы органической химии Том 2 -> Микроскопическое изучение термических свойств

Физические методы органической химии Том 2 -> Микроскопическое изучение термических свойств




ПОИСК







© 2025 chem21.info Реклама на сайте