Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изменение надмолекулярной структуры

    Из рис. 9.10 видно, что совпадение кривых нагрузка — удлинение и разгрузка — удлинение (кривая 2 н 4) наблюдается при очень большой скорости деформации, когда не успевают распадаться узлы флуктуационной сетки, либо при очень медленной равновесной деформации. В обоих этих случаях в процессе сокращения образца успевает восстановиться надмолекулярная структура, которая существовала в момент растяжения, В первом случае распада узлов сетки не было и поэтому незначительные изменения надмолекулярной структуры (например, частичная ориентация сегментов макромолекул в направлении растяжения) быстро релаксировали при сокращении. Во втором случае узлы сетки распадались, наблюдалась значительная ориентация сегментов макромолекул, но все эти изменения надмолекулярной структуры успевали восстановиться полностью в процессе сокращения благодаря большой продолжительности процесса. Таким образом в тех случаях, когда релаксационные процессы при сокращении образца успевают пройти полностью, петля гистерезиса отсутствует. Отсутствие петли гистерезиса означает отсутствие потерь меха- [c.127]


    На стадии формования или на последующих стадиях переработки в полимере могут происходить существенные структурные изменения (например, изменение надмолекулярной структуры, развитие молекулярной ориентации), которые могут быть результатом целенаправленного воздействия, предпринимаемого для улучшения физических и механических характеристик полимера. Связь между процессами формования и изменением структуры имеет большое практическое значение. Понимание этой связи помогает выбирать оптимальный технологический процесс. [c.32]

    Механические модели, рассмотренные выше, ие описывают экспериментальную кривую напряжение — деформация типа кривой 1 на рис. 9.10. Это естественно, поскольку при растяжении эластомера происходят, как мы видели, изменения надмолекулярной структуры, а в механических моделях структурные превращения не учитываются. Механические модели описывают только самый начальный близкий к линейному участок кривой. Чем больше скорость деформации, тем труднее растягивать эластомер. При очень большой скорости деформации узлы флуктуационной сетки не успевают распадаться и структурных изменений не происходит. В этом случае напряжение линейно увеличивается с ростом деформации вплоть до разрыва (кривая 2). [c.126]

    Изложенные выше основы кинетической теории прочности относятся к полимерам, которые мало деформируются перед разрушением. Это полимеры, надмолекулярная структура которых в момент разрушения сохраняется такой же, как в исходном образце, а не меняется кардинально в результате ориентации, как в эластомерах. Изменение надмолекулярной структуры в эластомерах, сильно деформирующихся к моменту разрушения, приводит к тому, что зависимость долговечности от напряжения в них подчиняется закономерностям, отличающимся от тех, что описываются уравнением Журкова. [c.205]

    МОДИФИЦИРОВАНИЕ ПОЛИМЕРОВ, направленное изменение физ.-хим. и (или) хим. св-в полимеров. Различают М.п. 1) структурное-модифицирование физ.-мех. св-в без изменения хим. состава полимера и его мол. массы, т.е. изменение надмолекулярной структуры полимера 2) осуществляемое введением в полимер способных взаимод. с ним в-в, в т. ч. и высокомолекулярных (см. Пластификация полимеров. Стабилизация полимеров, Наполненные полимеры)-, 3) химическое-воздействие на полимер хим. или физ. агентов, сопровождающееся изменением хим. состава полимера и (или) его мол. массы, а также введение на стадии синтеза небольшого кол-ва в-ва, вступающего с осн. мономером в сополимеризацию илн сополиконденсацию. Указанная классификация в значит, степени условна, т. к. многие типы М. п. взаимосвязаны, напр, химическое М. п. часто приводит к существ, изменениям структуры полимера. [c.105]


    С. п. иногда достигается за счет изменения надмолекулярной структуры полимера (т. наз. структурная стабилизация). Она м. б. осуществлена с помощью добавок, изменяющих структуру полимера, путем мех. воздействия (ориентация) и с помощью термич. обработки материала, как, напр., в случае феноло-формальд. смол. [c.412]

    Однако к данным, полученным методом ртутной порометрии, следует относиться критически, поскольку незначительные давления способны вызывать заметные изменения надмолекулярной структуры полимера и существенно искажать результаты измерения [96]. [c.38]

Рис. 10. Изменение надмолекулярной структуры полимера К-4 в зависимости от концентрации раствора. Рис. 10. Изменение надмолекулярной структуры полимера К-4 в зависимости от концентрации раствора.
Рис. 16. Изменение надмолекулярной структуры растворов К-4 и ПАА-1 в зависимости от pH среды. Рис. 16. Изменение надмолекулярной структуры растворов К-4 и ПАА-1 в зависимости от pH среды.
    Изменения наследственной программы—мутации происходят либо спонтанно, либо под влиянием мощных внешних факторов химических или радиационных воздействий, на хромосомы. Видимые под микроскопом хромосомные мутации, т. е. перестройки хромосом, означают изменение надмолекулярных структур, точечные или генные мутации в ДНК означают изменение молекулярной первичной структуры. [c.600]

    ИЗМЕНЕНИЕ НАДМОЛЕКУЛЯРНОЙ СТРУКТУРЫ [c.71]

    Превращение одних типов надмолекулярных структур в другие происходит под влиянием внешних воздействий, из которых, по-видимому, наиболее важным является воздействие тепла, хотя, например, механическая нагрузка также влияет на характер теплового движения в полимерах 198—200, 656]. При сообщении полимерному телу тепловой энергии происходит не только изменение надмолекулярной структуры в пределах одного физического состояния, но и переход из одного состояния в другое. [c.67]

    Характерной особенностью полимерных материалов является многообразие надмолекулярных структур и относительная легкость перехода одних структурных форм в другие. Основные характеристики прочности очень резко изменяются с изменением надмолекулярной структуры материала. В настоящее время есть основание утверждать, что в зависимости от условий разрушения может существенно изменяться объем, в котором осуществляется [c.219]

    Адсорбционное взаимодействие на границе раздела фаз полимер — твердое тело, сказываясь на условиях формирования полимерного материала, приводит к изменению надмолекулярных структур граничных слоев и всей полимерной фазы в наполненной системе. В работе В. А. Каргина и Т. И. Соголовой [2561 показано, что введение в кристаллизующиеся полимеры твердых добавок позволяет регулировать размер и число сферолитов. Механизм действия добавок заключается в том, что на поверхности твердых частиц в результате адсорбции возникают упорядоченные области полимера, играющие роль центров кристаллизации. С другой стороны, Ю. М. Малинским [257, 2581 установлено ингибирующее влияние твердой поверхности на кристаллизацию полимеров в пристенных слоях. [c.172]

    При введении искусственных зародышеобразователей происходят изменения механических свойств, как это было показано для изотактического полистирола [125, 126]. Таким образом, введение искусственных зародышей кристаллизации позволяет значительно изменять свойства получаемого полимера путем варьирования природы, количества и геометрической формы частиц. Однако введение искусственных зародышеобразователей не приводит к существенному изменению надмолекулярной структуры полимера в тех случаях, когда в расплаве уже имеется значительное количество собственных гетерогенных зародышей структурообразования. В этих условиях введение искусственных зародышеобразователей сказывается на первичной кристаллитной структуре и кинетике ее образования. Информацию об этом можно получить, исследуя изотермическую кристаллизацию наполненных полимеров [127— 131]. Рассмотрим более подробно эти результаты. [c.64]

    Авторы работы [19] показали, что уменьшение интенсивности р-процесса в пластифицированном поливинилхлориде связано с возрастанием вероятности возникновения более жестких конформаций цепи. Другие исследователи [20] объясняют этот эффект изменением надмолекулярной структуры поливинилхлорида при пластификации. Было показано [2], что обе эти точки зрения отражают различные аспекты одного и того же физического явления — антипластификации . [c.203]


    Взаимодействие полимерных цепей с поверхностью наполнителя, приводящее к уменьшению, их подвижности, должно изменять кинетику кристаллизации в случае кристаллизующихся полимеров. Наполнители могут оказывать влияние также и на процессы заро-дышеобразования при кристаллизации. Эффективность зародышеобразующего действия определяется природой как полимера, так и наполнителя. Исследование влияния малых добавок солей органических кислот, использованных в качестве искусственных заро-дышеобразователей,-на кристаллизацию показало [118—124], что они приводят к изменениям надмолекулярной структуры полимера, так как с изменением концентрации зародышеобразователей изменяются условия кристаллизации и процесс протекает с большей скоростью. Механизм действия добавок заключается в том, что на поверхности твердых частиц зародышеобразователя в результате адсорбции возникают упорядоченные области полимера, играющие роль центров кристаллизации. Такие упорядоченные области сохраняются на поверхности и при температурах, при которых полимер переходит в расплав, когда в его объеме гомогенные центры кристаллизации полностью разрушаются. При достаточно большой концентрации добавок число гетерогенных центров на их поверхности значительно превосходит число гомогенных центров, которые возникают в объеме в ходе кристаллизации. Увеличение числа центров кристаллизации приводит к увеличению общей скорости кристаллизации и уменьшению размера сферолитов (наличие добавки не влияет на скорость линейного роста сферолитов). [c.63]

    При оценке влияния наполнителей на электрическую прочность помимо образования неоднородного диэлектрика необходимо учитывать возможность изменения надмолекулярной структуры наполненных полимеров по сравнению с ненаполненными и вероятность увеличения макроскопической дефектности образцов. Нередко при введении наполнителей, особенно при высоких степенях наполнения, в материале возникают поры и трещины в таких случаях падение электрической прочности возможно даже при незначительном различии в значениях диэлектрической проницаемости и электрической проводимости-наполнителя и полимера. С другой стороны, некоторые мелкодисперсные добавки могут способствовать образованию однородной мелкосферолитной структуры образцов и тем самым приводить к увеличению ( пр [4, с. 112 129]. [c.146]

    В. Е. Гуля, М. С. Акутина и др. установлено, что целенаправленного изменения надмолекулярных структур можно добиться также введением на стадии переработки малых количеств структурирующих добавок. Во всех случаях существенное значение имеют температурный режим и механическая деформация, за счет которой достигается необходимая степень равномерного распределения структурирующих добавок по всему объему материала изделия. [c.10]

    Анализ проведенных исследований показал, что в целом решается комплекс проблем по повышению нефтеотдачи от фундаментальных исследований физико-химических основ подбора химреагентов, изучения свойств и вытеснения нефти до опытнопромышленных работ и внедрения разработок. Проведен комплекс работ по созданию химических композиций на основе полифункциональных органических соединений с регулируемыми вязкоупругими, вытесняющими и поверхностно-активными свойствами с целью избирательного воздействия на нефтенасыщенный пласт в тex юлoгияx повышения нефтеотдачи и обработки призабойной зоны пласта применительно к исследуемым месторождениям Республики Башкортостан. Теоретически разработана и экспериментально подтверждена концепция эффективного применения полифункциональных реагентов, обладающих свойством межфазных катализаторов. Изучен механизм взаимодействия полифункциональных реагентов с нефтью и поверхностью коллектора с использованием различных методов спектрофотометрии. Выявлены основные закономерности, происходящие в пласте под воздействием химреагентов. Установлено, что при взаимодействии ПФР с металлопорфиринами нефтей происходит процесс комплексообразования по механизму реакции экстра координации. Образование малоустойчивых экстракомплексов приводит к изменению надмолекулярной структуры МП и изменению дисперсности системы. Проведены сравнение реакционной способности различных ПФР и расчет констант устойчивости экстракомплексов. Показано, что наибольшей комплексообразующей способностью обладают ими-дозолины. Определены факторы кинетической устойчивости различных нефтей до и после обработки реагентами. Установлено, что реагенты уротропинового ряда обладают большей диспергирую-и ей способностью, чем имидозолины. Уменьшение размера частиц дисперсной системы вызывает снижение структурной вязкости нефти, что в конечном счете положительно сказывается на повышении нефтеотдачи. Показано, что вязкость нефти после контакта с водными растворами ПФР снижается в 3-8 раз. Оптимальные концентрации реагентов зависят как от структуры применяемого ПФР, так и от состава исследуемой нефти. [c.178]

    В области высоких концентраций ГК (0,025% и выше) влияние полярных фупп на энергию взаимодействия растворенных молекул ГК с растворителем велико, что обусловливает малые значения Av, близкие к значениям исходной воды С уменьшением концентраций ГК, особенно в случае сильно разбавленных растворов, т е при сохраняющейся в целом сетке Н-связей, эффект полярных групп компенсируется преимущественным проявлением эффекта гидрофобной гидратации неполярных фрагментов, что выражается в росте Av При таких концентрациях, на наш взгляд, происходит максимальное влияние молекул воды на изменение надмолекулярной структуры ГК, т е на изменение молекулярной подвижности ее отдельных компонентов и степени полидисперсности молекул ГК Это приводит к увеличению значений параметра Av и свидетельствует о структурировании водной матрицы [c.384]

    Таким образом, ИК спектроскопические наблюдения в полном соответствии с рентгенографическими данными показали единообразное изменение надмолекулярной структуры (аморфизация) и энергии когезии (уменьшение) макромолекул целлюлозы в результате реакций частичного алкилирования и этерификации. [c.65]

    Обычно на битумные материалы в условиях эксплуатации действуют тепло, солнечное облучение, кислород воздуха, озон, вода, бактерии, механические, в том числе динамические нагрузки (например, от автомобильного транспорта в дорожных покрытиях). Основным фактором, определяющим долговечность битумов, является старение. Старение может происходить за счёт химических превращений и за счёт изменения надмолекулярных структур в битумах и битумно-минеральных композициях. [c.119]

    Значительное влияние на старение битумов оказывают изменения надмолекулярной структуры, вызываемые её переходом в термодинамически более равновесное состояние. При формировании равновесных надмолекулярных структур в битумах существенно изменяются все свойства материала. [c.121]

    Изменение надмолекулярной структуры эластомеров сопровождается в изменением их механических свойств, о чем свидетельствуют данные табл. 1—3. Отчетливо видно улучшение свойств вулканизатов при введении небольших количеств добавок. [c.444]

    ИЗМЕНЕНИЕ НАДМОЛЕКУЛЯРНОЙ СТРУКТУРЫ ПРИ ОТЖИГЕ НЕОРИЕНТИРОВАННЫХ ПОЛИМЕРОВ [c.66]

    ИЗМЕНЕНИЕ НАДМОЛЕКУЛЯРНОЙ СТРУКТУРЫ ПОЛИМЕРОВ ПРИ ДЕФОРМАЦИИ [c.165]

    Результатом действия поверхностных сил является изменение надмолекулярной структуры жидкости и состава растворенных в ней веществ вблизи границы с твердой подкладкой. Эти изменения распространяются на расстояния порядка 10 —10 сж, оказывая особенно заметное влияние на механизм и скорость течения в тонких пленках и порах. Рассмотрение процессов переноса в таких системах с чисто гидродинамических позиций становится недостаточным. Правильные результаты могут быть получены только при одновременном учете поверхностных явлений. [c.78]

    Деформация клубков макро молекул обеспечивает эластическую деформацию расплава, достигающую нескольких сотен процентов. Это, однако, не приводит к столь существенному изменению надмолекулярной структуры расплава, чтобы вызвать зависимость вязкости от скорости или напряжения сдвига. Если полимер составлен из макромолекул одинаковой длины (равной молекулярной массы), то скорость деформации оказывается строго пропорциональной напряжению сдвига, т. е. вязкость не зависит от напряжения сдвига (кривые 1 на рис. 62 и 64). [c.132]

    Область применения пористых полимерных материалов можно существенно расширить путем их модификации. В этой связи на кафедре проводятся исследования по получению бактерицидных полимерных материалов на основе пористого полиэтилена и полипропилена. Подробное исследование привитой полимеризации акриловой кислоты на предварительно озонированные образцы позволило найти оптимальные условия реакции, при которых реализуется поверхностная прививка по стенкам пор без существенного изменения производительности пористой системы. Привитую полиакриловую кислоту можно использовать как основу дальнейшей модификации. В частности, применение полигексаметиленгуани-дина, образующего интерполимерный комплекс с ПАК, позволило получить бактерицидные системы, эффективно работающие против многих патогенных микроорганизмов. Высокая биоцидная активность ПГМГ в сочетании с низкой токсичностью, простотой синтеза и доступностью исходных веществ могут дать высокий положительный эффект в тех областях жизнедеятельности людей, где необходима антимикробная защита очистка и обеззараживание воды, дезинфекция, медицина, сельское хозяйство и проч. Использование в качестве инициатора для привитой полимеризации акриловой кислоты окислительно-восстановительной системы на основе двуокиси серы и гидропероксидов, образующихся при озонировании пористого полиэтилена, позволило существенно повысить гидрофильность модифицированного полимера - ПЭ. Начаты работы по модификации технического углерода, в частности сажи, применяющейся в качестве наполнителя при синтезе резино-технических изделий, красок и др. Показано, что обработка сажи дифторидом ксенона в соответствующих условиях позволяет получить образец с содержанием фтора до 23%. Процесс фторирования сопровождается изменением надмолекулярной структуры сажи, при этом внедрение фтора идет как за счет физической сорбции, так и за счет ковалентного связывания. [c.116]

    Мутации происходят либо спонтанно, либо под влиянием мощных внешних факторов — химических или радиационных воздействий на хромосомы и гены. Следует различать хромосомные мутации — перестройки хромосом, наблюдаемые под микроскопом, и точечные, или генные, мутации. Первые представляют собой изменения надмолекулярных структур, вторые — изменения последовательности нуклеотидов в ДПК и, соответственно, в мРПК. Здесь мы остановимся на точечных мутациях. [c.282]

    Следует отметить, что, по-видимому, надмолекулярное строение глюкоманнана изменяется при продолжительном хранении сухих выделенных препаратов. При длительном хранении деаце-тилированного глюкоманнана древесины сосны происходят какие-то изменения надмолекулярной структуры с образованием более стабильных межмолекулярных связей [2]. Об этом свидетельствуют данные о потере способности глюкоманнана к растворению, а также к гидролизу ферментами после продолжительной выдержки его при комнатной температуре. Можно полагать, что при старении препарата глюкоманнана происходит уплотнение его надмолекулярной структуры, не связанной с фрагментами молекул лигнина, присутствующими в препарате в небольшом количеств1е (до 3%). Если осаждаемый спиртом не гидролизуемый ферментами остаток выделегшого глюкоманнана составляет 8,9%, то у глюкоманнана после хранения в течение 1,5 года при комнатной температуре — 45,0%. [c.159]

    Молекулярная структура угля в заметной мере определяет и его надмолекулярную структуру. По мере увеличения доли углерода, входящего в ароматические фрагменты, возрастает степень их конденсированности, и за счет ван-дер-ваальсовых сил начинают формироваться кристаллитоподобные образования. Рост ароматичности происходит за счет диспропорционирования водорода между дегидрирующимися нафтеновыми структурами и подвергающимися гидрогенолизу мос-тиковыми связями и функциональными группами. В результате средняя молекулярная масса снижается и достигает минимума примерно при 75 масс. % углерода в органической массе угля, а затем начинает возрастать за счет процессов конденсации. Потеря функциональных групп приводит к ослаблению межмолекулярных донорно-акцепторных и водородных связей, что облегчает переориентацию макромолекул и формирование кристаллитов. Таким образом, изменение молекулярной структуры вещества приводит к изменению надмолекулярной структуры угля в ходе углефикации. Углям различных степеней унификации могут быть приписаны следующие надмолекулярные структуры (рис. 9.3). [c.447]

    Таковы в общих чертах за(кономвр ности изменений надмолекулярной структуры, возникающих при механичеокой обра ботке л(И- ейных полимеров. [c.341]

    Оценивая влияние тепла на физические и химические процессы, определяющие прочность полимеров, следует особенно внимательно учитывать влияние тепла на формирование соответствующих надмолекулярных структур, так как тип надмолекулярных структур существенным образом определяет прочность полимеров. Здесь уместно в качестве примера сослаться на исследование прочности термостабилизированного поликапроамида при изменении надмолекулярных структур, степени предварительной ориентации и продолжительности теплового воздействия [450, с. 402]. [c.162]

    Данные о неоднородности вулканизационной сетки реальных ненаполненных резин получены при изучении кинетических кривых набухания при избыточном давлении [111], по закономерностям светорассеяния набух-щих вулканизатов [112]. Сведения об образовании гетерогенных вулканизационных структур при серной вулканизации получены методами электронной микроскопии [113- 115], МУРР [53 116 117] и ЯМР [117 118]. К выводу о микрогетерогенном распределении сшивок приводит рассмотрение механических свойств вулканизатов [119 120]. Изменение надмолекулярной структуры каучука при серной вулканизации отмечено в работах [68 121]. [c.58]

    Изменения надмолекулярной структуры целлюлозы, происходящие при гидролизе, были охарактеризованы с помощью методов ренг- [c.14]

    Целлюлоза и хитозан обладают высоким взаимным адгезионным сродством и в условиях УДВ совмещаются на молекулярном уровне, при этом наблюдается существенное изменение надмолекулярной структуры реагентов. Был сделан вывод, что образование смесей целлюлозы с хитозаном в условиях УДВ, при которых происходит как разрушение физических структур, так и переход системы в пластическое состояние, позволяет в широких пределах варьировать степень диспергирования и гомогенизацию реагентов [47, 48]. [c.279]

    Направленное изменение надмолекулярной структуры полимеров мо/ксг осуществляться различными путями. Во-первых, структуру можно изменять нод воздействием соответствующей температуры и деформационной обработки [7—9]. В качестве примера можно привести ориентацию полимерных нленок, закалку экструзионных и литьевых изделий. В ряде случаев быстроохлаи, даемое изделие обладает высокой механической прочностью. Однако этот метод регулирования механических свойств используется лишь для тонкостенных изделий. В толстостенных изделиях часто наблюдается неоднородность структурных образований, что ведет к появлению разного рода микродефектов, вызывающих значительный разброс показателей физико-механических свойств готовых изделий и снижающих их надежность. Второй путь изменения надмолекулярной структуры материала в изделии — введение в полимер перед переработкой или в процессе переработки небольших количеств различных веществ, которые могут иметь самую разнообразную природу. Вследствие этого различается механизм их воздействия на полимерный материал [10]. [c.416]

    Однако в отличие от низкомолекулярных веществ в полимерах наблюдается не температура плавления, а скорее температурный интервал плавления, положение которого может изменяться в зави-Скмости от -молекулярной массы полимера и размеров микрокристаллитов, поверхностной энергии и концентрации дефектов в микрокристаллитах и других характеристик надмолекулярной структуры образца. Кроме того, па температуру плавления полимеров значительное влияние оказывают условия эксперимента (нанример, скорость нагревания и т. п.), что послужило причиной того, что раньше измерения температуры плавления проводили при очень низких скоростях нагревания с целью максимального приближения к равновесным значениям температуры плавления. В настоящее время эксперименты, напротив, проводят при достаточно высоких скоростях нагревания с. тем, чтобы свести к минимуму возможные изменения надмолекулярной структуры полимера в процессе измерений (в частности, изменение размеров кристаллитов). Строго говоря, вопрос о надежных значениях равновесных температур плавления для различных полимеров остается еще до конца не выясненным. [c.165]


Смотреть страницы где упоминается термин Изменение надмолекулярной структуры: [c.56]    [c.549]    [c.151]    [c.202]    [c.246]    [c.93]   
Смотреть главы в:

Вискозные волокна -> Изменение надмолекулярной структуры




ПОИСК





Смотрите так же термины и статьи:

Изменение структуры пор

Структуры надмолекулярные



© 2025 chem21.info Реклама на сайте