Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислород потенциал выделения

    Механизм электролитического оксидирования алюминия можно свести к следующей схеме. Вначале при малой плотности тока начинается окисление металла, и ионы его переходят в раствор. Насыщение прианодного слоя ионами А1 создает условия для образования на поверхности анода тонкой пленки основной соли алюминия. Вследствие химической поляризации потенциал анода повышается и, наконец, достигает значений, превышающих потенциал выделения кислорода в данном растворе. Тогда начинается окисление молекул воды. Выделяющийся кислород взаимодействует с алюминием, образуя оксидный слой. Схемы процессов при анодировании [c.218]


    Для выбранных металлов рассчитать величину анодной плотности тока , соответствующую потенциалу пассивации в растворе с величиной pH, считая, что замедленной стадией при протекании анодного процесса является стадия разряда, и вычислить потенциал выделения кислорода [c.158]

    Электролизом расплавов в промышленности получают алюминий, магний, натрий, литий, кальций, титан и другие металлы, потенциалы выделения которых из водных растворов солей более отрицательны, чем потенциал выделения водорода. При электролизе водных растворов хлоридов щелочных металлов выделяются хлор, водород, а также получают каустическую соду. Водород и кислород высокой чистоты выделяются в результате электролиза водных растворов щелочей. [c.251]

    Выше был рассмотрен пример электролиза 1 н. раствора азотнокислого серебра для выделения серебра из такого раствора необходимо напряжение 0,9 в. Очевидно, если концентрация серебра в растворе меньше 1 н., восстановление будет идти труднее и придется приложить большее напряжение. Серебряный электрод, погруженный в разбавленный (например, 0,1 или 0,01 М) раствор соли серебра, имеет по отношению к водородному электроду потенциал меньший, чем 0,9 в. Это соответствует увеличению напряжения разложения, так как потенциал выделения металла сдвигается влево, т. 6. дальше от потенциала выделения кислорода (см. рис. 35). [c.194]

    Цель работы — изучение влияния плотности тока и материала электродов на баланс напряжения ванны электролиза воды, а также на коэффициент газонаполнения электролита получение сравнительных данных по влиянию материала электродов на потенциал выделения водорода и кислорода в некотором интервале плотности тока. [c.158]

    Кислород обычно выделяется на пассивных электродах. Даже в тех случаях, когда потенциал ионизации металла значительно положительнее потенциала выделения кислорода, на аноде образуются неустойчивые выс- [c.448]

    Наиболее удобным из твердых электродов является платиновый электрод. Перенапряжение водорода на платине невелико, поэтому водород восстанавливается при потенциале —0,1 в. Это ограничивает использование платины в отрицательной области потенциалов. Но зато платина не окисляется при анодной поляризации электрода до потенциала выделения кислорода, т. е, до 4-1,1--1- 1,3 в (в зависимости от [c.153]

    Лотенциалы нерастворимых свинцовых анодов в цинковой, кадмиевой и других электролитных ваннах значительно положительнее потенциала выделения кислорода из воды, который, как известно, равен 1,23 в. Так, например, в цинковой ванне при а = 500 а/л 2 фа = 2,1 в в кадмиевой при 4 = 48 а м <ра = 1,87 в в медной регенеративной 1,6 в. [c.403]


    Измерения проводят при постоянном (контролируемом) потенциале либо при постоянном токе. В электрическую цепь включают газовый кулонометр. Электролиз ведут до полного превращения анализируемого вещества, после чего определяют количество пропущенного электричества и по уравнению (13) вычисляют содержание этого вещества. Измерения существенно упрощаются, если электролиз проводить при постоянной величине тока. Однако в этом случае изменяется потенциал электрода и со временем становится возможным протекание побочных электрохимических реакций раньше, чем завершится основная реакция. Для устранения этого затруднения применяют метод кулонометрического определения с регенерацией реагента — кулонометрическое титрование. В этом методе используют реагент, предотвращающий протекание побочных электрохимических реакций и обеспечивающий вместе с тем полноту прохождения основной электрохимической реакции. Так, например, кулонометрическое определение Ре + ведут в присутствии большого избытка ионов Се +. На платиновом аноде протекает реакция электрохимического окисления ионов Ре + до Ре +. При приближении к конечной точке концентрация Ре + у поверхности анода падает до нуля, а потенциал анода смещается до значення, соответствующего потенциалу выделения кислорода, хотя процесс окисления Ре + еще не завершен. В присутствии ионов Се + потенциал выделения кислорода не достигается, так как процесс [c.109]

    На рис. 2,12 изображена зависимость потенциала выделения хлора и кислорода и выхода хлора по току от анодной плотности тока. С ростом плотности тока доля тока на выделение кислорода уменьшается, что соответствует повышению выхода хлора по току. С повышением активности ионов хлора в растворе потенциала его выделения сдвигается в сторону менее -положительных значений и увеличивается выход по току, уменьшение выхода хлора по току при достижении определенного потенциала связано с возрастанием диффузионных ограничений по доставке ионов хлора к аноду с ростом плотности тока. [c.143]

    Обратимый потенциал выделения водорода в растворе, содержащем хлорид натрия и едки) натр при соотнощении, реально существующем в условиях электрохимического производства, составляет примерно —0,845 В (отн. и.в.а.). Перенапряжение водорода на стальном ка годе при электролизе растворов хлорида с твердым катодом доставляет 0,3 В. Перспективным, вероятно, является снижение потенциала в результате деполяризации катода кислородо.м. При подаче к поверхности катода кислорода или воздуха протекает реакция 0 + 2И 0 + 4е -). 40Н- [c.144]

    При этом для коррозии с кислородной деполяризацией справедливо соотношение /о>0к, так что для этой реакции в области потенциалов, представляющей интерес, имеется некоторый предельный ток, который и соответствует скорости коррозии при стационарном потенциале и защитному току. Для выделения водорода соотношение получается обратным /о< СОк. Эта реакция идет только при более отрицательных потенциалах, чем защитный потенциал, и следует прямой Тафеля, ход которой при логарифмическом изображении кривой 1(11) характеризуется заметным отклонением при переходе от предельного диффузионного тока кислорода к выделению водорода. Поляризация на этом участке кривой в таком случае показывает, что защитный ток больше предельного диффузионного тока кислорода и, следовательно, согласно неравенству (2.40), обеспечивается катодная защита. [c.103]

    На анодах с покрытием из оксида рутения выделяется только кислород. Присутствие в анолите некоторых ионов, не участвующих непосредственно в указанных реакциях, иногда способствует их развитию. Так, ион сульфата ускоряет реакции (1) и (2) в тем большей степени, чем выше его концентрация в анолите. Скорость побочных процессов относительно скорости выделения хлора практически мала, во-первых, из-за высокого перенапряжения кислорода на графите, оксиде рутения и некоторых других анодных материалах, во-вторых, из-за низкой концентрации в анолите иона гипохлорита, хотя в стандартных условиях электродные потенциалы перечисленных побочных реакций менее электроположительны, чем потенциал выделения хлора. Так, стандартный потенциал для реакции выделения хлора равен -1-1,36 В, для кислорода -Ь1,23 В, для окисления иона гипохлорита до хлората -f 0,51 В. [c.42]

    Из рассмотренного следуют условия проведения процесса, позволяющие достигнуть хороших технологических и экономических показателей поддерживать концентрацию поваренной соли в рассоле наиболее высокой — близкой к насыщению поддерживать высокую температуру процесса применять аноды из материала, обеспечивающего низкий потенциал выделения хлора и высокое перенапряжение для выделения кислорода работать с рассолами, максимально освобожденными от примесей, в частности от примеси сульфата натрия поддерживать низкий pH электролита. [c.44]


    Разряд ионов С1 на аноде объясняется так. Хотя обратимый потенциал разряда ионов ОН в нейтральном растворе состав ляет +0,83 в и соответственно для СР в насыщенном растворе Na l он равен +1,33 в, все же, благодаря высокому перенапряжению кислорода, потенциал выделения ионов 0Н становится более положительным, в сравнении с потенциалом выделения ионов С1 . Поэтому из концентрированных растворов Na l разрядятся лишь ионы С1 которые затем выделяются в виде газа СЬ. [c.120]

    Таким образом, коррозия с кислородной деполяризацией является термодинамически более возможным процессом, так как равновесный потенциал восстановления кислорода более положителен, чем равновесный потенциал выделения водорода. Общая кривая катодной поляризации (рис. 16) имеет сложный вид и является суммарной нз трех кршзых, характеризующих поляризацию ири ионизации кислорода (/), копцептрацноипую поля-рпзаи,пю (//) и поляризацию при разряде ионов водорода (///). Как это видно из рис. 16, общая катодная кривая слагается из тр х участков, характерных для этих трех процессов. [c.45]

    Э. д. с. должна быть равиа отрезку db = 1,237 в. На самом же деле при существующей плотности тока электролиза, pH распвора у анода сдвинется к точке X, т. е. к значению pH = 2, лри котором потенциал выделения кислорода будет отвечать величине 1,042 в— (точка d ). У катода pH раствора сдви-мется к точке у, т. е. ее значению pH = 12, лри котором потенциал катода будет равен — 0,708 в (точка Ь ). Суммарная величина обратной э. д. с. будет равной 1,75 в. Если учесть, что Чо (pt =0,43 в, общая э. д. с. будет равна 2,18 в. [c.36]

    Кислородсодержащие анионы или не способны окисляться, или их окисление происходит при очень высоких потенциалах, например, тaндaptный потенциал окисления иона ЗО (280Г = ЗгОя + 2е ) равен 2,010 В, что значительно превышает стандартный потенциал выделения кислорода (1,228 В). [c.124]

    Двуокись свинца, в свою очередь, отлагается на аноде в порах защитной пленки РЬ504, образуя прочный проводящий слой, препятствующий дальнейшему растворению анода. Вследствие этого потенциал анода еще более возрастает и достигает, наконец, потенциала выделения кислорода. С этого момента процесс выделения кислорода становится доминирующим. [c.36]

    Раствор имеет кислую реакцию. При электролизе этого раствора с золоты,м анодом наряду с растворением последнего протекает реакция разряда ионов Au iaO -, сопровождающаяся выделением кислорода. Это приводит к пассивированию анода. При пассивации переход золота в раствор прекращается, и потенциал электрода возрастает до величины потенциала выделения кислорода и разряда ионов С1" (потенциал выделения хлора в таких растворах равен +1,75 в). Поэтому на аноде идет выделение газообразных хлора и кислорода. [c.45]

    Окись железа восстанавливают водородом или сажей, частично до губчатого металла. При получении железной губки температуру в печи в случае восстановления водородом поддерживают около 600° С в случае восстановления сажей около 800° С. Содержание металлического железа в такой массе доводят приблизительно до 50%. Степень восстановления массы регулируется температурой и продолжительностью ее нахождения в цепи. Смесь окислов и металла охлаждается в восстановительной атмосфере, после чего удовлетворительно сохраняется на воздухе без значительного окисления. Полученную губку на вальцах наносят на железную сетку-токоподвод. При работе в аккумуляторах прессованный железный электрод становится еще более прочным. На начальных циклах работы емкость прессованных электродов из высоковосстановленной железной губки получается заниженной. Они требуют активации, которая достигается проведением глубокого разряда (до потенциала выделения кислорода). По-виднмому, смысл активации заключается в получении при зарядах, после глубокого разряда, более мелкодисперсной железной губки [16]. [c.538]

    Обратимый потенциал разряда ионов хлора в растворе, содержащем 4,53 моль/л Г>1аС1, при температуре 25 °С равен 1,325 В обратимый потенциал выделения кислорода в результате окисления молекул воды, рассчитанный по уравнению Нернста, при 25 °С равен 1,23 В. Следовательно, хлор на аноде выделяется при электролизе водных растворов хлоридов за счет более высокого перенапряжения выделения кислорода. [c.143]

    Кислород обычно выделяется на пассивных электродах. Даже в тех случаях, когда потенциал ионизации металла значительно положительнее потенциала выделения кислорода, на аноде образуются нестойкие высшие окислы и процесс идет не на чистой поверхности металла. Так, например, на платиновом аноде (фр =1,2 В) образуются окислы РЮг, РЮз и Р104. В зависимости от степени анодной пассивности поверхности и характера образовавшихся на ней окислов может изменяться и [c.215]

    Очевидно, что прежде всего пойдет первый процесс ионы свинца при этом сразу же вступят в химическую реакцию с образованием труднорастворимой соли PbS04. Поскольку концентрация сульфата или серной кислоты в растворе обычно значительна, то после включения тока очень быстро достигается произведение растворимости PbS04, который выкристаллизовывается на поверхности анода, образуя солевую пленку. В этот момент на поляризационной кривой, снятой потенциостатически, будет наблюдаться спад тока при одновременном быстром возрастании анодной поляризации (рис. 105). После спада тока потенциал электрода заметно и быстро растет до выделения кислорода. Спад тока и смещение потенциала обусловлены тем, что образовавшаяся на свинцовом аноде солевая пленка несплошная и в порах ее возможна ионизация свинца. В связи с сокращением поверхности истинная плотность тока возрастает и потенциал сдвигается в область более положительных значений. При этом достигается потенциал реакции (3) и на аноде образуется нерастворимый высший окисел металла РЬОг. Однако на этой стадии процесс не задерживается, так как образовавшаяся в порах фазовая пленка двуокиси свинца не обладает ионной электропроводностью и рост ее быстро затормаживается. Это приводит к дальнейшей значительной поляризации анода, вплоть до потенциала выделения кислорода. Вместе с тем, для протекания этого процесса необходимо значительное перенапряжение, поэтому становится возможным более электроположительный процесс (4) окисления ранее образовавшегося сульфата до двуокиси свинца. Не исклю- [c.436]

    Равновесный потенциал разряда на аноде молекул воды с выделением газообразного кислорода ниже равновесного потенциала выделения хлора, поэтому получение нрактически чистого хлора нри электролизе водных растворов хлоридов щелочных металлов становится возможным из-за большего (но сравнению с хлором) перенапряжения выделения кислорода на применяемых в практике анодных материалах графите, платине, окислах рутения или магнетите. [c.85]

    Влияние концентрации. Потенциал электрода зависит не только от природы данных веществ, но и от концентрации ионов в растворе. Выше был рассмотрен пример электролиза 1 М раствора нитрата серебра для выделения серебра из такого раствора необходимо приложить напряжение 0,9 В. Очевидно, если концентрация серебра в растворе меньше I М, восстановление будет идти труднее и придется приложить большее напряжение. Серебряный электрод погружен в разбавленный (например 0,1 или 0,01 М) раствор соли серебра, имеет по отношению к водородному электроду потенциал меньший, чем 0,9 В. Это сооответствует увеличению напряжения разложения, так как потенциал выделения металла сдвигается влево, т. е. дальше от потенциала выделения кислорода (см. рис. 12.3). [c.221]

    Проведение электролиза при высоких концентрациях хлорида натрия способствует снижению потенциала выделения хлора, сокращению потерь тока на выделение кислорода и увеличению выхода по току гипохлорита натрия. Помимо этого повышение концентрации хлорида натрия увеличивает электропроводность электролита и тем самым снижает напряжение на электролизере. Однако, если учитывать все показатели, влияющие на экономику процесса, то оказывается, что повышение концентрации Na l в электролите увеличивает удельный расход хлорида натрия, так как снижается экономически оправданная степень превращения хлорида в гипохлорит. Обычно электролизу подвергают растворы, содержащие 50—100 кг/м Na l, а в некоторых случаях и около 20 кг/м (морская вода). [c.140]

    Однако есть и существенные отличия. Во-первых, растворимость МаНСсЮа в 10 раз больще растворимости МаНРеОг. Поэтому электроды труднее пассивируются и значительно лучше работают при пониженных температурах. Во-вторых, потенциал кадмиевого электрода в растворах щелочи положительней потенциала выделения водорода и перенапряжение для выделения водорода на кадмии значительно. Поэтому саморазряд кадмиевого электрода невелик и в основном происходит из-за окисления кадмия кислородом по реакции [c.390]

    Равновесный нотеициал разряда па графитовом аноде молекул воды с выделением газообразного кислорода нии е равновесного потенциала выделения хлора, и получение практически чистого хлора при электролизе водных растворов хлоридов щелочных металлов становится возможным вследствие большей, по сравнению с хлором, величины перенапряжения кислорода на графите. То же самое происходит и на других применяемых анодных материалах — платине, окислах рутения или магнетите. [c.84]

    С помощью Э. удается осуществлять р-ции окисления и восстановления с большим выходом и высокой селективностью, к-рые в обычных хим. процессах трудно достижимы. Это позволяет использ. Э. для пром. получения и очистки многих в-в. Так, Э. водных р-ров получают и очищают Си, 2н, Мн, Сё, № и др. металлы (см. Гидроэлектрометаллургия). Э. расплавов получают А1, Mg, Ма, Ы, Са, Ве, Тт и др. металлы, потенциалы выделения к-рых из водных р-ров более отрицательны, чем потенциал выделения водорода (см. Электрохимический ряд напряжений). Произ-во фтора основано на Э. расплавл. смеси КР и НР, хлора — на 3. водных р-ров или расплавов хлоридов. Водород и кислород высокой чистоты получают Э. водных р-ров щелочей. О других применениях Э. см. Электросинтез, Гальванотехника, Анодное оксидирование. Изотопов разделение, Вольтамперометрия, Кулонометрия. [c.699]

    Влияние добавок и примесей. Существенное влияние на выход по току при получении пероксодвусерной кислоты и пероксодисульфата аммония оказывают добавки в электролит анионов С1, F и S N . Добавки даже небольшого количества роданистого аммония 0,15 г/л NH4S N и 0,04 г/л НС1 увеличивают выход по току почти на 10%. Это происходит потому, что эти добавки повышают потенциал выделения кислорода. На выход по току при получении пероксодисульфата аммония пйложительное влияние оказывает присутствие в электролите некоторых катионов, таких, как А1, Li, Na, К, s. [c.168]

    Исследованию значения потенциала выделения хлора па графитовых анодах в условиях, аналогичных работе промышленных электролизеров, посвящено большое число работ и у нас в стране [13—15], и за рубежом [16—22]. Многие исследования носвящены выделению кислорода на графитовом аноде, условиям совместного выделения хлора и кислорода на этих анодах [23—30], механизму процесса выделения хлора и влиянию на процесс природы соединений, образующихся на поверхности графитового анода в ходе электролиза [31]. [c.86]


Смотреть страницы где упоминается термин Кислород потенциал выделения: [c.430]    [c.313]    [c.450]    [c.227]    [c.160]    [c.33]    [c.10]    [c.402]    [c.122]    [c.379]    [c.514]    [c.173]    [c.180]    [c.194]    [c.184]    [c.357]    [c.11]    [c.27]   
Химические источники тока (1948) -- [ c.87 ]




ПОИСК





Смотрите так же термины и статьи:

Потенциал выделения



© 2025 chem21.info Реклама на сайте