Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рентгеновские лучи открытие

    После открытия Лауэ (1912 г.) дифракции рентгеновских лучей теория кристаллической решетки, которая начала развиваться еще в ХУП в., получила полное экспериментальное подтверждение. Методом рентгеноструктурного анализа были измерены межатомные расстояния и определено положение атомов в кристаллах. При этом было установлено, что структура кристаллов является плотнейшей упаковкой соответствующих структурных единиц и определяется прежде всего размерами этих структурных единиц. Согласно правилу Гольдшмидта (1927 г.), строение кристалла определяется числом его структурных единиц (ионов), отношением их радиусов, а также их поляризационными свойствами. Усиленное изучение связи состава и свойств твердых веществ с их кристаллической структурой привело к формированию новой отрасли химии — кристаллохимии. Кристаллохимические исследования, среди которых выдающееся значение имели работы Л. Полинга, А. В. Шубникова, Н. В. Белова, А. И. Китайгородского, помогли глубже понять природу твердых веществ, раскрыть закономерности, управляющие образованием кристаллических структур, в том числе таких сложных, как структуры силикатов и алюмосиликатов. [c.166]


    Физики сразу же заинтересовались этим открытием. Среди тех, кто первым начал изучать рентгеновские лучи, был и французский физик Антуан Анри Беккерель (1852—1908). Он занимался флуоресценцией — свечением, наблюдаемым у ряда веществ после облучения их солнечным светом. Его интересовало, не содержит ли флуоресцентное свечение рентгеновские лучи. [c.152]

    Но, пожалуй, самым замечательным критическим явлением будет так называемая критическая опалесценция, которая для однокомпонентных систем была открыта Авенариусом (1874) уже через несколько лет после открытия критической точки. Если газ охлаждать при критической плотности, то он при температуре примерно на один градус выше критической начинает излучать голубоватый свет опалесценции, интенсивность которого сильно увеличивается с приближением к критической точке, хотя система все еще остается гомогенной. Это явление основано на том, что при приближении к критической точке сильно возрастает прежде всего в прямом направлении интенсивность рассеяния света. Такие же явления наблюдаются в критической точке расслоения жидких и твердых систем. В последнем случае для доказательства нужно, конечно, использовать рентгеновские лучи. Критическая опалесценция является, как показывает теоретический анализ, непосредственным следствием того факта, что критическая точка расположена на границе области стабильности, [c.238]

    Наиболее существенной чертой современной модели идеального кристаллического вещества является ее трехмерная периодичность. Уже в работах Бравэ (1811—1863) модель кристаллического вещества предстала в виде решетчатой системы материальных точек и выглядела приблизительно так, как мь> видим сегодня строение молекулярного кристалла (в статическом варианте) объединенные в молекулы точечные атомы внутри идентичных элементарных ячеек. Представление о кристалле как о решетчатом расположении точечных атомов позволило Лауэ в 1912 г. предсказать, обнаружить и интерпретировать дифракцию рентгеновских лучей. Открытие Лауэ положило начало рентгеноструктурному анализу. [c.134]

    Рассмотрим прежде всего /С-уровни. Их значения для большинства элементов собраны в книге Зигбана и даны в табл. 29. Энергии возрастают, грубо говоря, пропорционально квадрату Z, что соответствует первой эмпирической закономерности в рентгеновских лучах, открытой Мозли. Мозли нашел, что квадратные корни из частот линий приближенно являются линейными функциями Z. Если изобразить на графике квадратные корни из частот, измеренных в ридбергах, как функцию Z, то получается удивительно хорошая прямая с наклоном, близким к 1. Чтобы заметить отклонения от закона Мозли, надо построить график /v — X как функцию Е, для того чтобы исключить основной линейный член. Такой график представлен на фиг. 44. [c.313]


    В самом конце XIX в. в физике было сделано два фундаментальных открытия, оказавших глубочайшее влияние на развитие химии, в том числе органической. Это открытие электрона и рентгеновских лучей. Открытие электрона позволило не только значительно [c.195]

    Рентген пришел к выводу, что когда катодные лучи наталкиваются на анод, возникает какое-то излучение, которое проходит сквозь стекло трубки, картон и воздействует на материалы, находящиеся вне трубки. Рентген переносил фотобумагу в соседнюю комнату, но и там она продолжала светиться до тех пор, пока была включена установка катодных лучей, т. е. открытое им излучение проникало даже сквозь стены. Это всепроникающее излучение Рентген назвал Х-лучами . (Со временем было установлено, что рентгеновские лучи по своей природе аналогичны свету, но обладают гораздо большей энергией.) [c.152]

    Исследовать внутреннюю структуру кр [ сталлов удалось в XX веке, после того, как в 1912 г. была открыта дифракция рентгеновских лучей, на которой основан р е и т г е и о с т р у к т у р и ы й анализ. [c.160]

    Открытие рентгеновских лучей привело к открытию ядра. Опишите исторические события, связавшие эти две области научных исследований. [c.316]

    Рентгеноструктурный анализ. Метод исследования с помощью дифракции рентгеновских лучей. За 65 лет, прошедших со времени открытия дифракции рентгеновских лучей в кристаллах, рентгеноструктурный анализ превратился в массовый метод исследования структуры неорганических кристаллов и полимерных веществ [310—312]. Применительно к исследованию асфальтенов он начал использоваться последние 20 лет. [c.154]

    РЕНТГЕНОВСКИЕ ЛУЧИ — электро магнитные колебания весьма малой длины волн, возникающие при воздействии на вещество быстрыми электронами. Р. л. открыты в 1895 г. В. Рентгеном. Волновая природа Р. л. установлена в 1912 г. М. Лауэ, открывшим явление интерференции Р. л. в кристаллах. Это открытие явилось основой развития рентгеноструктурного анализа. Р. л. невидимы для глаза, обладают способностью вызывать яркую видимую флюоресценцию в некоторых естественных и в искусственно изготовляемых кристаллических веществах, они действуют на фотоэмульсию и вызывают ионизацию газов. Этими свойствами Р. л. пользуются для обнаружения, исследования и практического использования Р. л. Различают два типа Р. л. тормозное и характеристическое излучение. Тормозное излучение возникает при попадании электронов на антикатод рентгеновской трубки оно разлагается в сплошной спектр. Характеристические Р. л. образуются при выбивании электрона из одного из внутренних слоев атома с последующим переходом на освободившуюся орбиту электрона с какого-либо внен)не-го слоя. Они обладают линейчатым спектром, аналогичным оптическим спектрам газов, с той лишь разницей, что структура характеристического спектра, в отличие от оптического спектра газов, не зависит от вещества, дающего этот спектр. Зависимость от вещества проявляется только в том, что с увеличением порядкового номера элемента в периодической системе элементов Д. И. Менделеева весь его характеристический рентгеновский спектр смещается в сторону более коротких волн. Другой особенностью характеристических спектров является то обстоятельство, что каждый элемент дает свой спектр независимо от того, возбуждается ли этот элемент к испусканию в свободном состоянии или в химическом соединении. Это свойство является основой рентгеноспектрального йпализа. Р. л. широко используются в науке и технике. Высокая про- [c.213]

    Развитие экспериментальных исследований, особенно в области физики, в конце XIX и начале XX в., привело к ряду важных открытий (например, открытие радиоактивности элемента), доказавших сложную природу атома и определивших дальнейшие пути изучения его внутреннего строения. Открытие явления радиоактивности подтвердило наличие в атомах более простых частиц и возможность превращения атомов одних элементов в атомы других. Был открыт электрон и связанный с ним ряд явлений, как, например, поток свободных электронов в вакууме, возбуждение рентгеновских лучей при торможении потока электронов, испускание электронов накаленными телами (термоэлектронная эмиссия), фотоэлектрический эффект, давление света и др. [c.10]

    Рентгеновские лучи представляют собой электромагнитные колебания, длина волны которых (10 —м) сравнима с линейными размерами атомов. Открытие рентгеновских лучей принадлежит В. Рентгену (1895), а их волновая природа была установлена спустя 17 лет М. Лауэ совместно с В. Фридрихом н П. Книппингом, которые обнаружили дифракцию (рассеяние) рентгеновских лучей на кристаллах. [c.113]


    Новое открытие в 1915 г.— дифракции рентгеновских лучей на кристаллах — подтвердило исключительное значение атомного номера. [c.17]

    Связь между формой макро- или микрокристалла и его внутренним строением, определяемым распределением элементарных материальных частиц в пространстве, удалось установить после открытия рентгеновских лучей. [c.98]

    Открытие рентгеновских лучей и радиоактивности [c.58]

    Ряд великих научных открытий был сделан за небольшой период всего лишь в несколько лет, начиная с 1895 г. Эти открытия привели к огромным изменениям как в химии, так и в физике. Рентгеновские лучи были открыты в 1895 г., радиоактивность — в 1896 г., и в том же году были выделены новые радиоактивные элементы — полоний и радий, а в 1897 г. был открыт электрон. [c.58]

    Вскоре после открытия рентгеновских лучей французский физик Анри Беккерель (1852—1908) исследовал некоторые минералы, содержащие уран. Он обнаружил, что эти минералы испускают лучи, которые, подобно рентгеновским лучам, могут проходить через черную бумагу и другие непрозрачные материалы и засвечивать фотопластинку. Он обнаружил также, что излучение, испускаемое урансодержащими минералами, может также, подобно рентгеновским лучам, разряжать электроскоп (рис. 3.9), делая воздух электропроводящим. [c.59]

    Какие неожиданные наблюдения привели к открытию рентгеновских лучей и радиоактивности Кто и коша их открыл  [c.75]

    Первое наблюдение радиоактивности является классическим примером случайного научного открытия. В 1896 г. Беккерель занимался исследованием свойств лучей, незадолго до того открытых Рентгеном. Беккерель заметил, что рентгеновские лучи и солнечный свет заставляют флуоресцировать некоторые минералы. Зная, что рентгеновские лучи вызывают почернение фотографической пластинки, даже если она завернута в светонепроницаемую бумагу, он заинтересовался, продолжает ли минерал после освещения солнечным светом испускать какое-то излучение, которое, подобно рентгеновским лучам, способно вызывать почернение фотопластинки. В один из пасмурных дней Беккерель был вынужден прервать свои опыты и положил рядом с фотографическими пластинками, завернутыми в светонепроницаемую бумагу, минерал, содержавший уран. На следующий день при проверке фотографических пластинок он обнаружил, что они почернели лишь из-за того, что находились рядом с этим минералом. Так была открыта радиоактивность. [c.62]

    Мы уже упоминали, что рентгеновские лучи были открыты в 1895 г. и интенсивно изучались в последующие годы. Уже через несколько недель после открытия Рентгена венские врачи стали применять эти лучи в хирургической практике. Свойствам рентгеновских лучей были посвящены [c.63]

    Из работ Мозли следовало, что с помощью рентгеновских лучей, образующихся при столкновении пучка электронов с металлической мишенью, можно измерить заряд атомного ядра. Именно в этой характеристике заключалось основное различие между атомными ядрами разных элементов, и Мозли назвал ее порядковым (атомным) номером элемента (рис. 4.11). Это позволило установить строгую последовательность элементов, не обращаясь к свойствам внешних частей атома, различным спектрам, связанным с его внешними частями (см. разд. 5.1), и к химическим свойствам элементов. Оказалось, что Мозли нашел способ измерения числа единичных положительных зарядов (позднее названных протонами) в атомном ядре. Это открытие позволило разрешить несколько невыясненных вопросов [c.64]

    Это обстоятельство в свое время едва не послужило опровержением явления нтерференции рентгеновских лучей, открытого М. Лауэ. [c.157]

    Физические свойства вещества зависят от атомного состава, структуры, характера движения и взаимодействия частиц. Для определения этих параметров используются разнообразные физические методы исследования. К ним относятся методы, основанные на явлении дифракции рентгеновского излучения, электронов п нейтронов. Явление дифракции рентгеновских лучей на монокристаллах было открыто М. Лауз в 1912 г. Оно явилось началом рентгеноструктурного анализа твердых тел, жидкостей и газов. Советские ученые А. Ф. Иоффе, С. Т. Конобеевский, Н. Е. Успенский, Н. Я. Селяков одними из первых применили рентгеноструктурный метод для определения геометрических размеров кристаллических решеток и их пространственной симметрии, нахождения координат атомов кристалла, обнаружения преимущественных ориентировок (текстур), возникающих при деформации твердых тел, исследования внутренних напряжений, построения диаграмм состояния. Их основополагающие работы в этой области получили дальнейшее развитие в трудах Г. В. Курдюмова, Г. С. Жданова, Н. В. Белова, В. И. Данилова, В. И. Ивероновой, А. И. Китайгородского, Б. К. Вайнштейна и др. [c.4]

    Метод непосредственного анализа тонкой структуры кристаллов при помощи рентгеновских лучей, открытый в 1912 г. Лауэ, позволил приступить к изучению структур реальных силикатных кристаллов. Первые успехи в этом направлении были достигнуты английски-М И физиками А. и У. Бреггами. Махачки разработал общепринятую в настоящее время структурную классификацию силикатов, явившуюся весьма плодотворным вкладом в общее развитме физической химии силикатов. В настоящее время в СССР весьма интересные исследования сложных силикатных структур проводятся Беловым и его сотрудниками. Существенное значение имеют рентгенографические исследования немецкого ученого Шибольда структур полевых шпатов. [c.7]

    Но вот произошло открытие рентгеновских лучей и радиоактивности. В 1895 г. Вильгельм Рентген (1845-1923) проводил опыты с сильно ваку-умированными круксовыми трубками (см. рис. 1-11), что позволяло катодным лучам соударяться с анодом без препятствий, создаваемых молекулами газа. Рентген обнаружил, что при этих условиях анод испускает новое излучение, обладающее большой проникающей способностью. Это излучение, названное им х-лучами (впоследствии его стали также называть рентгеновскими лучами), легко проходит через бумагу, дерево и мышечные ткани, но поглощается более тяжелыми веществами, например костными тканями и металлами. Рентген обнаружил, что х-лучи не отклоняются в электрическом и магнитном полях и, следовательно, не являются пучками заряженных частиц. Другие ученые предположили, что эти лучи могут представлять собой электромагнитное излучение, подобное свету, но с меньшей длиной волны. Немецкий физик Макс фон Лауэ доказал эту гипотезу спустя 18 лет, когда ему удалось наблюдать дифракцию рентгеновских лучей на кристаллах. [c.329]

    ТОЛЬКО в XX столетии, после того как в 1912 г. Лауэ, Фридрихом и Книппингом (Германия) было открыто явление дифракции рентгеновских лучей, на котором основан метод рентгеноструктурного анализа. [c.142]

    Вывод пространственных групп дал знаменитый русский кристаллограф Е. С. Федоров (1890 г.). После открытия дифракции рентгеновских лучей федоровские группы микросимметрии кристаллов составили основу, на которой стал развиваться структурный анализ. Простой способ вывода федоровских групп предложил Н. В. Белов [7]. [c.61]

    Мысль о том, что внешняя форма кристалла является отражением его скрытого внутреннего строения, высказывалась учеными давно. Однако доказать это удалось лишь после открытия дифра,кции рентгеновских лучей и рентгеноструктурного анализа. Рассмотрим строение [c.238]

    Рентгеноструктурный анализ. Этот метод является наиболее старым из перечисленных. Дифракция рентгеновских лучей была открыта Лауэ с сотр. в 1912 г. Тогда же Лауэ показал, что разность хода лучей с длиной волны к, рассеиваемых в дифракционном направлении, т. е. а(соьф— osx). > де о — периодичность решетки [c.201]

    Однако вопрос о том, какие силы обеспечивают создание строгоупорядоченных органических молекул, иными словами, какова природа валентности, все еще оставался нерешенным. Подходы к решению этого вопроса открылись в связи с научной революцией, происшедшей на рубеже века в физике. В результате открытия радиоактивности, электрона, рентгеновских лучей атом предстал перед исследователями уже не прежним неизменяемым и неделимым шариком , а сложной динамической системой, в которой большую роль играют электрические силы. В 19П г. Э. Резерфорд выдвинул модель атома в виде тяжелого положительно заряженного ядра и движущихся вокруг него легких электронов. Через два года Н. Бор дал математическую обработку этой модели. [c.38]

    Изучая геометрические формы кристаллов, учеиые уже давно высказывали мысль о том, что правильная форма кристаллов является следствием закомерного расположения частиц в пространстве. Однако экспериментально доказать это удалось сравнительно недавно — после открытия рентгеновских лучей. [c.64]

    Изучение стеклоуглерода с помощью малоуглового рассеяния рентгеновских лучей привело к выводу, что размеры пор (средний диаметр) составляет величину порядка 2 нм. Подробное исследование формирования пористой структуры и переход открытой пористости в недоступную при термической обработке стеклоуглерода в широком интервале температур — от 200 до 3000 °С приведено в работе [115], По данным этой работы, до 400 °С объемная и пикнометрическая (по гелию) плотности совпадают и, следовательно, отсутствуют открытые поры. В интервале температур 400-1200 °С наблюдается различие в объемной и пикнометрической плотностях с максимумами газопроницаемости, водопоглоще-ния, адсорбции и десорбции. [c.199]

    Вильгельм Конрад Рентген (1845—1923), профессор физики Вюрцбургского университета (Германия), сообщил в 1895 г. об открытии нового вида лучей, которые он назвал Х-лучами. Эти лучи возникают при прохождении электричества через эвакуированную трубку. Лучи исходят из тех мест трубки, в которых электроны ударяются о стекло. Они обладают способностью проходить через вещества, не пропускающие обычного света, и вызывают почернение фотографической пластинки. Уже через несколько недель после сообщения об этом важном открытии рентгеновские лучи стали применять в медицине для обследования пациентов с переломами костей и другими повреждениями. [c.58]

    В качестве примера изоморфизма можно рассмотреть кристаллы минералов родохрозита МпСОз и кальцита СаСОз. Как видно из рис. 4.4, кристаллы этих двух веществ очень похожи. Оба кристалла принадлежат к гексагональной кристаллической системе (см. разд. 2.5) и имеют четко выраженную ромбоэдрическую спайность. Больший из двух ромбоэдрических углов кристалла родохрозита составляет 102°50, а кальцита — 10Г55. Данные, подтверждающие изоморфность этих кристаллов, установлены более ста лет назад. После открытия дифракции рентгеновских лучей удалось убедиться в том, что эти кристаллы действительно имеют одинаковую структуру. [c.89]

    Впервые искусств, мутации получены в 1925 Г.А. Надсе-ном и Г. С. Филипповым у дрожжей действием радиоактивного излучения радия в 1927 Г. Мёллер получил мутации у дрозофилы действием рентгеновских лучей. Способность хнм. в-в вызывать мутации (действием иода на дрозофилы) открыта в 1932 В. В. Сахаровым. [c.151]

    Вьщающиеся открытия в физике в кон. 19 в. (рентгеновские лучи, радиоактивность, электрон) и развитие теоретич. представлений (квантовая теория) привели к открытию новых (радиоактивных) элементов и явления изотопии, возникновению радиохимии и квантовой химии, новым представлениям [c.259]

    Когда было установлено, что существуют и другие виды электромагнитного излучения, распространяющиеся со скоростью света, стало-ясно, что свет не уникальное явление природы, а лишь видимое проявление гораздо более общего эффекта, к которому относятся также инфракрасное излучение (открытое Гершелем в 1800г.), электрическое излучение (открытое Герцем в 1887 г.) и рентгеновское излучение (открытое Рентгеном в 1896 г.). Все эти виды излучения относятся к той или иной части электромагнитного спектра (рис. 2.14). Электромагнитный спектр непрерывен и простирается от области чрезвычайно коротких длин волн и высоких частот, соответствующей космическим лучам, до области чрезвычайно длинных и низкочастотных электрических волн. Все виды излучения отличаются только длиной волны X, т.е. расстоянием между двумя последовательными максимумами волнового процесса. Любое электромагнитное излучение распространяется с одинаковой скоростью, которая в вакууме составляет 3,00-10 м/с (обозначается с), и проявляет волновые свойства. В спектре электромагнитного излучения принято выделять разлитаые области, однако между ними не существует четких границ правда, видимая часть спектра (380—760 нм) имеет довольно определенные границы, но это обусловлено ограниченной способностью человеческого глаза к восприятию излучения. Для обнаружения излучения в различных областях электромагнитного спектра созданы специальные приборы, называемые спектроскопами, спектрометрами или спектрографами в зависимости от того, каким образом в них производится регистрация излучения. [c.33]

    Открытие В. Г. и В. Л. Брэггами того факта, что рентгеновские лучи могут отражаться от поверхности кристаллов, позволило изучить строение твердых тел. Одновременно стало возможным решить вопрос о том, что представляют собой частицы, из которых построено твердое тело, как и па каких расстояниях эти частицы располагаются в кристаллах. Эти данные в свою очередь позволяют найти средний объем, занимаемый в кристаллах атомами или ионами. С другой стороны, мольный объем можно найти по известной нлотиостп и молекулярному весу вещества. Отношение мольного объсхма к объему, приходящемуся на одну молекулу, представляет собой число Авогадро. [c.25]


Смотреть страницы где упоминается термин Рентгеновские лучи открытие: [c.106]    [c.308]    [c.330]    [c.6]    [c.250]    [c.75]    [c.63]    [c.208]    [c.537]   
Общая химия (1974) -- [ c.55 , c.58 ]

Применение поглощения и испускания рентгеновских лучей (1964) -- [ c.16 ]




ПОИСК





Смотрите так же термины и статьи:

Лучи рентгеновские

Открытие рентгеновских лучей и радиоактивности

Открытие электрона Открытие рентгеновских лучей и радиоактивности

Рентген К открытие и исследование рентгеновских лучей

Характеристические рентгеновские лучи открытие

лучами рентгеновскими лучами



© 2025 chem21.info Реклама на сайте