Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Компартменты клеточные

    Прокариоты не имеют окруженного мембраной ядра. ДНК в виде замкнутой в кольцо молекулы свободно располагается в цитоплазме. Эта бактериальная хромосома содержит всю необходимую для размножения клетки информацию. Кроме того, в прокариотической клетке могут содержаться очень небольшие кольцевые молекулы ДНК-плазмиды без них, однако, клетка может обойтись. Прокариотическая клетка органелл не содержит подразделение клетки на компартменты менее выражено, чем у эукариот. Рибосомы меньше (70S). У прокариот рибосомы, ферменты белкового синтеза и состав клеточной стенки имеют ряд особенностей, благодаря которым на клетку могут специфически [c.11]


Рис. 8-4. Гипотезы эволюционного происхождения митохондрий, хлоропластов, ЭР и клеточного ядра, объясняющие топологические взаимоотношения этих внутриклеточных компартментов в эукариотических клетках. А. Митохондрии и хлоропласты могли возникнуть при поглощении бактерий эукариотической клеткой. С помошью этой гипотезы можно объяснить, почему полость перечисленных выше органелл остается изолированной от обширного везикулярного транспорта, связывающего полости многих других внутриклеточных компартментов. Б. Рис. 8-4. Гипотезы <a href="/info/1402988">эволюционного происхождения</a> митохондрий, хлоропластов, ЭР и <a href="/info/610972">клеточного ядра</a>, объясняющие топологические взаимоотношения этих внутриклеточных компартментов в <a href="/info/104367">эукариотических клетках</a>. А. Митохондрии и хлоропласты могли возникнуть при <a href="/info/97198">поглощении бактерий</a> <a href="/info/104367">эукариотической клеткой</a>. С помошью этой гипотезы <a href="/info/1904363">можно объяснить</a>, почему полость перечисленных выше органелл остается изолированной от обширного <a href="/info/1413171">везикулярного транспорта</a>, связывающего полости <a href="/info/1633379">многих других</a> внутриклеточных компартментов. Б.
    Структурная. Клеточная мембрана отделяет клетку от окружающей среды. Внутриклеточные мембраны делят клетку на компартменты, выполняющие специфические биологические функции. [c.301]

    Из-за малых размеров и локализации в клеточных компартментах эти образования в отличие от белковых телец нельзя наблюдать с помощью сканирующей микроскопии. [c.137]

    В зеленом клеточном соке одновременно присутствуют растворимые белки из всех компартментов клеток (ядер, хлоропластов, митохондрий, цитоплазмы, вакуоли и др.), а также органеллы и их фрагменты, в значительной мере состоящие из липопротеиновых мембран. [c.246]

    Содержимое всех живых клеток отделено от окружающей среды специальными структурами - биомембранами, которые обычно называют прото-плазматическими мембранами. У растений и бактерий наряду с такими мембранами снаружи клетки еще имеется клеточная стенка. Для эукариотических клеток характерно деление внутреннего содержимого клетки на отдельные отсеки, или компартменты. Они представляют собой субклеточные органеллы, ограниченные мембранами, например, ядро митохондрии, аппарат Гольджи. Однако мембраны служат не только поверхностями раздела. По существу, мембраны представляют собой сложные по строению и разнообразные по функциям биохимические системы. [c.106]

    Существование клетки как целостной системы, существование функциональных клеточных органоидов требует компартмента-лизации, пространственного разграничения этих систем мембранами, характеризуемыми регулируемой проницаемостью. Белки-ферменты, входящие в состав мембран в комплексах с липидами, обеспечивают активный транспорт метаболитов в клетку и из нее, идущий в направлении, противоположном градиенту концентрации. Эта функция белков тесно связана с механохимиче-ской. Кроме того, белки катализируют метаболические биоэнергетические процессы, протекающие в мембранах. Так, ферменты митохондрий, локализованные в мембранах, ответственны за биохимические процессы, связанные с дыханием, за механические движения митохондрий, за активный транспорт. [c.176]


    В эукариотических клетках почти все специфичные дегидрогеназы, принимающие участие в окислении пирувата и другого клеточного топлива через цикл лимонной кислоты, находятся во внутреннем компартменте митохондрий-в их матриксе (рис. 17-2). Во внутренней митохондриальной мембране локализуются переносчики электронов, составляющие дыхательную цепь, и ферменты, катализирующие синтез АТР из ADP и фосфата. Молекулы, играющие роль [c.509]

    Клеточные мембраны играют важную роль по ряду причин. Они отделяют клеточное содержимое от внешней среды, регулируют обмен между клеткой и средой (поступление в клетку питательных веществ и удаление из нее отходов ) и делят клетки на отсеки, или компартменты, предназначенные для тех или иных метаболических путей, например для фотосинтеза или аэробного дыхания. Некоторые химические реакции, в частности световые реакции фотосинтеза в хлоропластах, протекают на самих мембранах. Здесь же на мембранах располагаются и рецепторные участки для распознавания гормонов, нейромедиаторов или других химических веществ, поступающих из окружающей среды или из других частей самого организма. Знакомство со всеми свойствами клеточных мембран необходимо для понимания того, как функционирует клетка. [c.182]

    Наши знания о субклеточных структурах далеко не полны,, и тем не менее уже сейчас ясно, что преимущественная локализация ферментов и метаболитов в определенных клеточных структурах —явление широко распространенное. Между отдельными компартментами клетки должна существовать взаимосвязь, и, возможно, она осуществляется с помощью локализованных в мембранах транспортных систем, которые сами могут быть белками, обладающими каталитическими свойствами, я метаболитами или ионами, подверженными регуляторным воздействиям. На мембранах клеток и субклеточных органелл локализованы определенные ферменты, согласованная деятельность которых зависит от их пространственного расположения. Для окруженных мембранами органелл и компартментов характерна более высокая концентрация ферментов, метаболитов, ионов и молекул-регуляторов таким образом, отдельные компартменты вносят свой вклад в функционирование клетки в целом. [c.93]

    Некоторые белки находятся в обособленных клеточных органеллах (компартментах), таких, как митохондрии или лизосомы. Некоторые являются компонентами мембран. Среди них наибольший интерес представляют те, которые расположены в плазматической мембране (окружающей цитоплазму). Другие белки секретируются из клетки в окружающую среду. Каким же образом эти белки находят конечный пункт своего назначения  [c.128]

    Бактерии - наиболее простые организмы, обнаруженные в большинстве природных сред обитания. Это - сферические или удлиненные клетки обычно размером в несколько микрометров (рис. 1-13). Как правило, у них имеется жесткая защитная оболочка, называемая клеточной стенкой, под которой находится плазматическая мембрана, ограничивающая единственный цитоплазматический компартмент, содержащий ДНК, РНК, белки и малые молекулы. В электронном микроскопе содержимое таких клеток имеет вид матрикса различной плотности без явно выраженных организованных внутренних структур (см. рис. 1-8, А). [c.22]

    Тысячи и тысячи различных биохимических реакций, одновременно осуществляемых клеткой, тесно скоординированы между собой. Разнообразные механизмы контроля регулируют активность клеточных ферментов при изменении существующих в клетке условий. Наиболее общая форма регуляции - это легко обратимое ингибирование по принципу обратной связи, когда первый фермент метаболического пути ингибируется конечным продуктом этого пути Более длительная форма регуляции включает в себя химическую модификацию одного фермента под действием другого, что часто происходит в результате фосфорилирования Комбинации регуляторных механизмов могут вызывать сильные и длительные изменения в метаболизме клетки. Не все клеточные реакции происходят в одних и тех же внутриклеточных компартментах, и пространственное разграничение клетки внутренними мембранами позволяет органеллам осуществлять специализацию своих биохимических функций. [c.111]

    Биологические функции белка определяются деталями химических свойств его поверхности. Углубления на поверхности белка, образованные точно расположенными аминокислотными остатками, формируют центры специфического связывания Ферменты катализируют химические изменения связанных с ними молекул субстратов при этом для расширения своих возможностей они часто используют маленькие, прочно связанные молекулы коферментов. Скорость ферментативных реакций нередко лимитируется диффузией, однако она может быть выше, если фермент и субстрат оказываются вместе в одном и том же небольшом клеточном компартменте. [c.167]


    Внутриклеточная сортировка макромолекул и сохранение клеточных компартментов [c.516]

    Возможный путь эволюции ЭР и клеточного ядра. В некоторых бактериях ДНК присоединена к впячиванию плазматической мембраны, называемому мезосомой. Подобное впячивание у очень древней прокариотической клетки могло привести к образованию оболочки вокруг ДНК при сохранении доступа ДНК к цитозолю (так как ДНК должна управлять синтезом белка). Предполагается, что эта оболочка может полностью оторваться от плазматической мембраны, образуя ядерный компартмент. окруженный двойной мембраной. Как показано на рисунке, ядерная оболочка формируется при участии волокнистой структуры — ядерной ламины, и пронизана каналами, называемыми ядерными порами. Благодаря этим порам полость ядра топологически эквивалентна цитозолю. Полость ЭР переходит в пространство между внешней и внутренней ядерными [c.10]

    Больщинство фосфолипидов и гликолипидов в водной среде самопроизвольно образуют бислои. Более того, эти липидные бислои имеют тенденцию к замыканию самих на себя, что приводит к формированию закрытых отсеков (компартментов). При этом устраняются свободные края, на которых гидрофобные хвосты могли бы соприкасаться с водой. По той же причине компартменты, построенные из липидных бислоев, стремятся сами залечить свои повреждеиия, смыкая края разорванных участков. Кроме способности к самосборке липидный бислой обладает и другими характеристиками, делающими его идеальным материалом лля клеточных мембран. Важнейшее из этих свойств - текучесть, которая, как мы увидим в дальнейшем, обусловливает многие функции мембраны. [c.352]

    Мембраны выполняют в клетке большое число функций. Наиболее очевидной из них является разделение внутриклеточного пространства на компартменты. Плазматические мембраны, например, ограничивают содержимое клетки, а митохондриальные — отделяют митохондриальные ферменты и метаболиты от цитоплазматических. Полупроницае-мость мембран и позволяет им регулировать проникновение внутрь клеток и клеточных органелл как ионов, так и незаряженных соединений. Проникновение многих из них внутрь клетки осуществляется против градиента концентрации. Таким образом, в процессе, известном под названием активный транспорт, совершается осмотическая работа. Протекающий в мембранных структурах бактерий и митохондрий процесс окислительного фосфорилирования служит источником энергии для организма. В хлоропластах зеленых листьев имеются мембраны с очень большим числом складок, которые содержат хлорофилл, обладающий способностью поглощать солнечную энергию. Тонкие мембраны клеток глаза содержат фоторецепторные белки, воспринимающие световые сигналы, а мембраны нервных клеток осуществляют передачу электрических импульсов. [c.337]

    Примечание. Этап фиксации гистологических препаратов очень важен. Белки должны фиксироваться так, чтобы исключить их диффузию в другие клеточные или субклеточные компартмеиты. К тому же фиксация не должна нарушать антигенную структуру белка и препятствовать доступу антител к антигенам за счет образования более или менее проницаемой молекулярной сети. Кроме того, представляется, что в некоторых семенах доступ антител к антигенам может сильно ограничиваться в некоторых ткаиях или субклеточных компартментах [44, 271- [c.106]

    Так, в растительной клетке белки образуют макромолеку-лярный остов цитоплазматического матрикса, ядерных структур, основное вещество, или строму митохондрий и пластид. В соединении с липидами они участвуют в построении всех мембранных систем плазмалеммы, эндоплазматического ретикулума, ядер-ной оболочки, аппарата Гольджи, мембраны митохондрий и пластид. Различные белки обнаруживаются даже в скелетной перегородке, называемой пектоцеллюлозной оболочкой, которая окружает клетку. Кроме того, к этим структурным белкам добавляются ферментные белки, более или менее характерные для того или иного клеточного компартмента. [c.125]

Рис. 19-18. Сильно схематизированное изображение группы растительных клеток, соединенных плазмодесмамн. Плазматическая мембрана, выстилающая плазмодесмы, разделяет весь объем растения на два компартмента вне-клеточвый (апопласг) и внутрн-клеточный (симпласт). Для большей ясности схемы клеточные органеллы не показаны. Рис. 19-18. Сильно схематизированное <a href="/info/604697">изображение группы</a> растительных клеток, соединенных плазмодесмамн. <a href="/info/101065">Плазматическая мембрана</a>, выстилающая <a href="/info/102482">плазмодесмы</a>, разделяет <a href="/info/1025424">весь объем</a> растения на два компартмента вне-клеточвый (апопласг) и внутрн-клеточный (симпласт). Для большей ясности <a href="/info/1536343">схемы клеточные</a> органеллы не показаны.
    Действительно, недавно в нормальных клетках млекопитающих была открыта эндогенная АДФ-рибозилтрансфераза, которая специфически модифицирует дифтамидный остаток в ЕР-2. Фермент ассоциирован с полирибосомами, т. е. присутствует в том же клеточном компартменте, который содержит факторы элонгации ( в случае эукариотической клетки). Функция эндогенного АДФ-рибозилирования ЕР-2, возможно, состоит в воздействии на активность ЕР-2, отличную от катализа транслокации. Известно, что АДФ-рибозилирование ЕР-2 дифтерийным токсином приводит к утрате неспецифической РНК-связывающей способности ЕР-2 и, следовательно, к [c.219]

    Весьма существенной для жизнедеятельности эукариотических клеток является способность мембран любых компартментов клетки сливаться и разъединяться Поэтому регулируемый поток в мембранных образованиях в направлении клеточная мембрана (эндоцитоз) — эндосома — лизосома -> комплекс Гольджи ЭПР коплекс Гольджи секреторная гранула (экзоцитоз) в основном экспериментально установлен и, следовательно, реален [c.133]

    Понятия (шозиционная информация и позиционное значение помогают сделать белее ясным анализ структурообразования во многих системах. Некоторые важные общие принципы хорошо иллюстрируют простой эксперимент на развивающихся конечностях куриного эмбриона. Нога и крыло у него закладываются примерно в одно время и вначале выглядят как небольшие выступы на боковой поверхности тела, похожие на язычки. Внешне клетки этих зачатков одинаковы они еще не дифференцировались, и нет никаких намеков на то, каким будет здесь строение скелета. Если из основания зачатка ноги, из области будущего бедра, вырезать небольшой участок недифференцированной ткани и пересадить его на верхушку зачатка крыла, то из трансплантата образуется не соответствующая часть крыла и даже не часть бедра, а палец ноги (рис. 15-43), Этот эксперимент прежде всего показывает, что клетки зачатка ногн внутренне отличны от клеток зачатка крыла содержащаяся в них позиционная информация предопределяет образование ноги, хотя нога и крыло в конечном итоге будут состоять из дифференцированных клеток одних и тех же нескольких типов. Во-вторых, из этого эксперимента видно, что пересаженные клетки, будучи уже детерминирсяаны для образования ноги, все еще способны отвечать на сигналы, указывающие их положение вдоль оси конечности, и поэтому из них формируется палец ноги, а не бедро. Таким образом, можно заключить, что детальная позиционная информация у позвоночных приобретается клетками не сразу-она накапливается как ряд элементов, записанных в клеточной памяти в разное время. Здесь, как и в случае детерминации компартментов в имагинальных дисках насасомых, конечное состояние клетки определяется рядом последовательных выборов. [c.93]

    Перемещение отдельных клеток можно наблюдать довольно часто. Например, в химерном эмбрионе мыши клетки двух исходных морул перемешиваются, и в результате ткани взрослого животного представляют собой хаотическую мозаику клеток с различными генотипами. После рентгеновского облучения эмбрионов дрозофилы границы отдельных клеточных клонов тоже оказываются довольно неправильными. Однако случайные перемещения клеток после детерминации привели бы к нарушению нормального пространственного распределения клеток различного типа. Поэтому после приобретения клетками особенностей, соответствующих их расположению, клетки должны оставаться в надлежащем участке. Вероятно, фаницы компартментов у дрозофилы закрепляются в результате избирательного слипания клеток сходные клетки слипаются сильнее, чем разнородные. В опытах in vitro удалось получить данные в пользу того, что этот же принцип действует и у позвоночных. Можно, напрнмер, разделить и перемешать эмбриональные клетки печени и сердца, после чего они образуют плотный комок в этом случае часто наблюдается самосортнровка клеток, как если бы клетки каждого типа обладали большим сродством к себе подобным, нежели к клеткам других типов (см. разд. 12.1.4). Понятно, что такое избирательное сродство должно препятствовать перемещению клеток из того места, где они образовались. [c.121]

    Благодаря плазмодесмам растительный организм оказывается не простой совокупностью отдельных клеток, а сложным сообществом взаимосвязанных живых протопластов. Позтому все тело растения можно рассматривать как систему, которую образуют два компартмента 1) внутриклеточный компартмент-так называемый симпласт, состоящий из объединенного множества протопластов (в том числе протопластов ситовидных трубок флоэмы) и ограниченный объединенной плазматической мембраной всех жнвых клеток, и 2) внеклеточный компартмент, или апопласг, включающий все клеточные стенки и мертвые пустые проводящие клетки ксилемы, а также находящуюся в тех и других воду (рис. 19-18). Оба компартмента имеют свои собственные транспортные системы, однако в определенных точках онн могут сообщаться между собой, а также подвергаться локальной модификации для обеспечения контроля протекающих между ними обменных процессов. [c.175]

    Строение тела у грибов уникально. Оно состоит из массы тонких ветвящихся трубчатых нитей, называемых гафами (в единственном числе — гифа), а вся эта масса гиф в совокупности называется мицелием. Каждая гифа окружена тонкой жесткой стенкой, основным компонентом которой является хитин — азотсодержащий полисахарид. Хитин является также структурным компонентом наружного скелета членистоногих (разд. 2.8.6). Гифы не имеют истинного клеточного строения. Протоплазма гиф либо совсем не разделяется, либо разделяется поперечными перегородками, называемыми септами. Септы делят содержимое гиф на отдельные отсеки (компартменты), внешне похожие на клетки. В отличие от истинных клеточных стенок образование септ не связано с делением ядер. В центре септы, как правило, остается небольшое отверстие (пора), через которое протоплазма может перетекать из одного компарт-мента в другой. [c.41]

    Эукариотические клетки по определению и в отличие от прокариотических имеют яОро (по гречески карион ), Ддро, в котором находится большая часть клеточной ДНК, ограничено двойной мембраной (рис. 1-18). Таким образом, компартмент, содержащий ДНК, отделен от остального содержимого клетки - цитоилазмы, где протекает большинство метаболических реакпий. В самой питоплазме различают множество характерных органелл. Среди них особенно вьщеляются два типа-ми- [c.27]

Рис. 1-24. Электронная микрофотография среза клетки млекопитающего. Виден аппарат Гольджи. Эта структура состоит из нескольких слоев уплощенных мембранных пузырьков (см. также схему 1-1). Аппарат Гольджи участвует в синтезе и упаковке материала, предназначенного для секрепии из клетки, а также в транспорте новосинтезированных белков в отведенный для них клеточный компартмент. (С любезного разрешения Рис. 1-24. <a href="/info/73091">Электронная микрофотография</a> <a href="/info/1345392">среза клетки</a> млекопитающего. Виден <a href="/info/97362">аппарат Гольджи</a>. Эта структура состоит из <a href="/info/1266389">нескольких слоев</a> уплощенных мембранных пузырьков (см. <a href="/info/98039">также схему</a> 1-1). <a href="/info/97362">Аппарат Гольджи</a> участвует в синтезе и <a href="/info/529329">упаковке материала</a>, предназначенного для секрепии из клетки, а также в транспорте новосинтезированных белков в отведенный для них клеточный компартмент. (С любезного разрешения
    Между эктодермой и энтодермой находится еще один компартмент, отделенный как от гастроваскулярной полости, так и от внешней среды. Здесь в узком замкнутом пространстве между эпителиальными клетками расположены нервные клетки. Под внешней поверхностью формируются специализированные клеточные контакты, образующие непроницаемый барьер. Сокращая мышечноподобные клетки эктодермы и энтодермы, животное способно изменять форму и двигаться. Контроль и координацию этих сокращений осуществляют нервные клетки, которые способны проводить электрические сигналы (рис. 1-33, 1-34 и 1-35). Как мы увидим в дальнейшем, для нормального функционирования нервных клеток критическое значение имеет концентрация простых неорганических ионов в окружающей среде. Большинство нервных клеток, в том числе и наши собственные, приспособлены для работы в растворе, ионный [c.45]

    На следующем уровне пространственного разобщения в клетке происходит концентрирование функционально связанных ферментов в одной и той же мембране или в ограниченных мембранами водим компартментах органелл. Проиллюстрировать это можно на примере метаболизма глюкозы (рис. 2-41). Образовавшийся в результате гликолиза пируват активно захватывается из цитозоля во внутренне пространство митохондрий, где имеются все ферменты и метаболиты цикла лимонной кислоты. Более того, сама внутренняя митохондриальная мембрана содержит все ферменты, катализирующие последовательные реакции окислительного фосфорилирования, включая реакции переноса электронов от NADH к О2 и реакции синтеза АТР. Следовательно, всю митохондрию можно считать небольшим заводом, производящим АТР. Аналогичным образом другие клеточные органеллы. такие, например, как ядро, аппарат Гольджи и лизосомы. можно рассматривать как специализированные компартменты, в которые за- [c.110]

Рис. 6-81. Текучесть плазматической мембраны подвижных клеток как результат асимметрии эндоцитозного цикла в этих клетках. Фибробласт (показан в разрезе) движется слева направо. Эндоцитоз мембраны, содержащей рецепторы, происходш в окаймленных ямках, распределенных по клеточной поверхности случайным образом. Поглощенная мембрана возвращается из эндосомного компартмента (не показан) в виде экзоцитозных пузырьков, сливающихся с мембраной передней (по отнощению к движению клетки) оконечности клетки. Таким образом, эндоцитоз по всей поверхности и направленный экзоцитоз вызывают перетекание компонентов мембраны в направлении, обратном движению клетки (показано Рис. 6-81. Текучесть <a href="/info/101065">плазматической мембраны</a> подвижных клеток как <a href="/info/627938">результат асимметрии</a> <a href="/info/1339693">эндоцитозного цикла</a> в этих клетках. Фибробласт (показан в разрезе) движется слева направо. Эндоцитоз мембраны, содержащей рецепторы, происходш в окаймленных ямках, распределенных по <a href="/info/97316">клеточной поверхности</a> случайным образом. <a href="/info/1387636">Поглощенная мембрана</a> возвращается из эндосомного компартмента (не показан) в виде <a href="/info/1351262">экзоцитозных</a> пузырьков, сливающихся с мембраной передней (по отнощению к <a href="/info/510363">движению клетки</a>) оконечности клетки. <a href="/info/461013">Таким образом</a>, эндоцитоз по <a href="/info/1469882">всей</a> поверхности и направленный экзоцитоз вызывают перетекание <a href="/info/101082">компонентов мембраны</a> в направлении, <a href="/info/1061725">обратном движению</a> клетки (показано
    Большинство клеток непрерывно осуществляет эндоцитоз фрагментов своей плазматической мембраны и затем возвращает их обратно на клеточную поверхность в цикле эндоцитоза-экзоцитоза, опосредуемого в основном клатрин-окаймленными ямками и пузырьками. Многие поверхностные рецепторы, связывающие специфические внеклеточные макромолекулы, локализуются в клатриновых окаймленных ямках и как следствие поглощаются в составе окаймленных пузырьков. Этот процесс называется опосредуемым рецепторами эндоцитозом. Окаймленные эндоцитозные пузырьки быстро теряют свою клатриновую оболочку и сливаются с эндосомами, где происходит сортировка рецепторов и лигандов. Большинство лигандов отделяется от рецепторов внутри эндосомы и, в конечном итоге, попадает в лизосомы. А большая часть рецепторов возвращается через транспортные пузырьки обратно на клеточную поверхность для повторного использования. Известны комплексы рецептор - лигано, которые проходят по другому пути из эндосомного компартмента. Иногда и рецептор, и лигано попадают в лизосому и деградируют. В некоторых случаях рецептор и лиганд переносятся сквозь клетку, и лиганд высвобождается на другой поверхности клетки путем экзоцитоза. Этот процесс называется трансцитозом. [c.425]

    Центральную роль в компартментации эукариотической клетки играют белки. Они катализируют реакции, протекающие в каждой органелле, и избирательно переносят малые молекулы внутрь органеллы и из нее Белки также служат специфичными для органелл поверхностными маркерами, которые направляют новые партии белков и JIипидoв к соответствующим компартментам. Клетка млекопитающих содержит около 10 миллиардов (10 ) молекул белков примерно 10000 разных типов, синтез почти всех этих белков начинается в цитозоле - общем пространстве, окружающем все органеллы. Каждый вновь синтезированный белок затем специфически доставляется в тот клеточный компартмент, который в нем нуждается. Прослеживая путь белка из одного компартмента в другой, можно разобраться в запутанном лабиринте клеточных мембран. Следовательно, нам надлежит сделать центральной темой этой главы внутриклеточные перемещения белков. Хотя здесь будут описываться и обсуждаться почти все клеточные органеллы, основное внимание будет обращено на эндоплазматический ретикулум (ЭР) и аппарат Г ольджи, которые играют решающую роль в фиксации, сортировке и транспорте множества вновь синтезированных белков. [c.5]

    Происхождение клеточного ядра, имеющего особенным образом устроенную двойную мембрану, более загадочно. Известно, что единственная бактериальная хромосома прикреплена к совершенно определенным участкам с внутренней стороны прокариотической плазматической мембраны. Одно из предположений состоит в том. что двуслойная ядерная оболочка могла образоваться из глубокого виячивания плазматической мембраны, как показано на рис. 8-4, Б. Эта гипотеза объясняет, почему внутреннее пространство ядра топологически эквивалентно цитозолю. Действительно, во время митоза у высших эукариот ядерная оболочка разрушается, и содержимое ядра полностью смешивается с цитозолем, чего никогда не происходит ни с одной другой мембранной органеллой. Таким образом, во время митоза клетка временно возвращается к прокариотическому состоянию, когда хромосомы не имеют отдельного компартмента. [c.9]

    Каковы пространственные отношения эпителиальных и соединительных тканей в организме Эпителиальные клеточные пласты выстилают все полости и свободные поверхности тела, и благодаря снециализироваппым соедипепиям между клетками эти пласты могут служить барьерами для передвижения воды, растворов и клеток из одного компартмента организма в другой. Как показано на рис. 14-1, эпителии почти всегда располагаются на подложке из соединительной ткани, которая может связывать их с другими тканями (например, мышечной), не имеющими явно выраженной эпителиальной или соединительнотканной организации. [c.474]

    Экспрессия генов группы gap и pair-rule носит временный характер, но она накладывает отпечаток на экспрессию генов полярности сегментов и гомеозисных селекторных генов экспрессия этих последних генов сохраняется, подвергаясь некоторым уточнениям в процессе дальнейшего развития и обеспечивает клетки позиционной информацией. Механизм клеточной памяти частично обеспечивается положительной обратной связью (предполагающей, что белковые продукты гомеозисных селекторных генов стимулируют транскрипцию собственных генов) и частично наследуемыми изменениями структуры хроматина. Необходимость некоторых форм запоминания позиционных значений можно продемонстрировать в экспериментах на клетках имагинальных дисков, из которых возникают наружные структуры тела взрослого организма, эти клетки сохраняют память о своих исходных назначениях в течение неопределенного числа клеточных делений. Такое поведение определяется постоянным присутствием гомеозисных селекторных генов в каждой отдельной клетке любого имагинального диска. Границы компартментов. которые, по всей вероятности, поддерживаются благодаря избирательному сшшшию отдельных клеток, делят клетки, характеризуемые различным состоянием дифференцировки, согласно экспрессии этих генов. [c.134]

Рис. 18-54. Гипотетическая схема обработки белковых антигенов и их представлепия антиген-представляющими клетками. Было показано, что глико протеины МНС рециркулируют (т. е. совершают кругооборот) через эндосомный компартмент поэтому они могли бы сначала ассоциироваться с пептидными фрагментами в эндолизосомном компартменте. а затем возврашаться на клеточную поверхность со связанным Рис. 18-54. <a href="/info/1388154">Гипотетическая схема</a> обработки <a href="/info/213875">белковых антигенов</a> и их представлепия антиген-представляющими клетками. Было показано, что глико протеины МНС рециркулируют (т. е. совершают кругооборот) через эндосомный компартмент поэтому они могли бы сначала ассоциироваться с <a href="/info/510305">пептидными фрагментами</a> в эндолизосомном компартменте. а затем возврашаться на <a href="/info/97316">клеточную поверхность</a> со связанным

Смотреть страницы где упоминается термин Компартменты клеточные: [c.362]    [c.185]    [c.210]    [c.275]    [c.498]    [c.5]    [c.73]    [c.82]    [c.132]    [c.135]   
Молекулярная биология клетки Т.3 Изд.2 (1994) -- [ c.5 ]

Молекулярная биология клетки Т.3 Изд.2 (1994) -- [ c.5 ]




ПОИСК







© 2025 chem21.info Реклама на сайте