Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Оксид азота хемосорбция оксидами

    Ввиду того, что равновесие в системе графит - водород сильно зависит от температуры, причем с повышением температуры количество метана уменьшается и при 1000 °С близко к нулю, возможен перенос углерода из мест с более низкой температурой в места с более высокой температурой (где углерод может осаждаться). При взаимодействии с диоксидом углерода направление переноса массы углерода имеет обратное направление - от более горячих мест к менее горячим. Водород не образует с графитом слоистых соединений. Хемосорбция водорода происходит по активным местам, на что указывает полное прекращение хемосорбции водорода после адсорбции кислорода на поверхности графита при температуре жидкого азота. При повышенных температурах водород реагирует с адсорбированным на графите кислородом, что является эффективным способом удаления поверхностных оксидов с графита, т.е. методом очистки его поверхности. [c.127]


    Хемосорбция — адсорбция, сопровождающаяся химическим воздействием поглощаемого вещества с сорбентом. Хемосорбция применяется в технике при поглощении диоксида углерода, оксида азота, аммиака и т. п. Процесс осуществляется обычно в башнях, заполненных пористой насадкой, через которую фильтруется очищаемая сточная вода. [c.550]

    Все оксиды азота, входящие в состав нитрозных газов, нерастворимы в воде, но, за исключением оксида азота (II), взаимодействуют с ней. Поглощение их водой сопровождается химической реакцией хемосорбции, протекающей в системе газ— жидкость , описываемой уравнениями  [c.221]

    Химические реакции,очистки протекают на границе раздела фаз и скорость этого процесса определяется скоростью подвода реагирующих компонентов к поверхности раздела фаз, скоростью химической реакции и отвода ее продуктов в объем жидкости. Поэтому вихри, способствующие конвективному переносу массы и энергии из одной фазы в другую, интенсифицируют также и процесс хемосорбции. Такая интенсификация осуществлена в устройстве , предназначенном для очистки газов от паров и тумана азотной кислоты, а такл е оксидов азота (рис. 4-1). Газ последовательно проходит через аппараты I и II. Каждый аппарат имеет вихревое контактное устройство и волокнистый фильтр, улавливающий туман. В каждом контактном устройстве жидкость циркулирует под действием энергии газового потока. [c.61]

    Измененная методика кислородной хемосорбции предусматривает в качестве источника кислорода оксид азота(I), который разлагается до азота и адсорбируемого кислорода. Указанный метод применяется для измерения поверхности меди [9, 10] и серебра [16]. Удивительно, но оксид азота (I) не способствует окислению массы меди в объеме при температуре ниже 100 °С [9], по-видимому, из-за кинетических эффектов. [c.45]

    Исследования относятся к каталитической химии. Установил (середина 1920-х) связь между скоростями каталитических р-ций, их тепловыми эффектами и тепло-тами адсорбции. Экспериментально подтвердил вывод X. С. Тэйлора о величине энергии активации как осн. критерии типа адсорбции. Участвовал в создании статистической теории активной поверхности. Показал, что катализ происходит за счет снижения энергетического барьера р-ции, а эффект селективности обусловлен разными типами хемосорбции. В обоснование идей Н. Д. Зелинского и А. А. Баландина пришел к выводу (1928) об увеличении длин исходных связей в промежуточной хемосорбции. Установил (1930—1933) относительную активность 10 оксидов металлов в р-циях разложения оксида азота (П1), ставшую затем основанием для изучения электронного механизма р-ций. Выявил (1952) роль свободных электронов в каталитической активности оксидов. В дальнейшем развивал электронную теорию катализа на металлах и оксидах на основе изучения кинетики гетерогенных р-ций и факторов, изменяющих электронное состояние ТВ. катализаторов. [c.497]


    Процесс катализа состоит из нескольких последовательно протекающих элементарных актов диффузия молекул азота, кислорода и оксида серы (IV) к катализатору (I), хемосорбции молекул реагентов на поверхности катализатора (II), химического взаимодействия кислорода и оксида серы (IV) на поверхности катализатора с переносом электронов от молекул оксида серы к молекулам кислорода и образованием неустойчивых комплексов (III), десорбции образовавшихся молекул оксида серы (VI) (IV) и диффузии их из пор и с поверхности катализатора в газовую фазу. [c.165]

    А б с о р б iTiTTIk ндкостями — наиболее распространенный и до сих пор наиболее надежный способ газоочистки. Она используется в промышленности как основной прием извлечения из газов оксидов углерода, оксидов азота, хлора, диоксида серы, сероводорода и других сернистых соединений, паров кислот (НС1, H2SO4, HF), цианистых соединений, разнообразных токсических органических веществ (фенол, формальдегид, фталевый ангидрид и др.) и т. д. Метод абсорбционной очистки основан на избирательной растворимости вредных примесей в жидкости (физическая абсорбция) или избирательном извлечении их прн помощи реакций с активными компонентами поглотителя (хемосорбция). Абсорбцион- [c.229]

    Газовая смесь, образовавшаяся после сожжения пробы, поступает в восстановительную зону, название которой полностью не отражает всех происходящих в ней реакций, служит для количественного восстановления оксидов азота в элементный азот, поглощения непрореагировавшего избыточного кислорода, хемосорбции галогенов, а в случае необходимости — для осуществления конверсии 50з в ЗОг при определении серы и при совместном определении С, И, Ы, 5 или С, Ы, 5. Эту зону обычно наполняют металлической проволокообразной медью с относительно большой площадью активной поверхности. В каждом случае следует выбирать оптимальные температуру и длину слоя [93]. Обычно при определении С, И, N поддерживают температуру 650 °С, при определении 5 — 820 °С. Недостатком меди является ее склонность к спеканию при указанной температуре. Во избежание этого было предложено применение посеребренной меди [71], однако этот препарат оказался малоэффективным. Использование для указанных целей СигО [94] тоже не обеспечивает полноты протекания реакций. Кроме окис-лительно-восстановительных реакций, протекающих в реакционном блоке, здесь также осуществляется поглощение мешающих элементов с помощью селективно-адсорбирующих реагентов, таких, как Ад, АдШ04, АдУОз, MgO, СеОг и др. Это необходимо, если соответствующие реагенты не предусмотрены в составе наполнения зоны доокисления или если эту роль не выполняют плавни и окислители, добавленные непосредственно к пробе в зоне окисления. [c.19]

    Хемосорбция молекулы дисульфида на оксиде происходит прежде всего за счет наличия ат01М0в азота в их молекулах и проявления донорно-акцепторных взаимодействий, а разрыв на радикалы происходит по связям 5—5, 5—С или 5—N в зависимости от строения дисульфида [14]. Действительно, если в присутствии [c.272]


Смотреть страницы где упоминается термин Оксид азота хемосорбция оксидами: [c.234]    [c.155]    [c.155]    [c.64]    [c.471]    [c.655]   
Каталитические процессы переработки угля (1984) -- [ c.45 ]




ПОИСК





Смотрите так же термины и статьи:

Азот азота оксид

Азота оксиды

Хемосорбция



© 2025 chem21.info Реклама на сайте