Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вязкость неассоциированных

    Вклад советских ученых в разработку всех этих проблем весьма велик. А. И. Бачинский предложил наиболее общее уравнение зависимости вязкости неассоциированных жидкостей от температуры. Я. И. Френкель первый вывел теоретически обоснован- [c.15]

    Вязкость смеси нормальных (неассоциированных) жидкостей  [c.357]

    Вязкость неассоциированной жидкости (кроме спиртов, органических кислот, воды, ртути)  [c.258]


    В качестве примера сопоставим данные по вязкости, приведенные в табл. 60. Особо отметим производные анилина. Хотя в орто-изомере и возможно существование внутримолекулярной Н-связи, межмолекулярные ассоциаты образуются за счет второго атома водорода аминогруппы, и в результате оказывается, что вязкость орто- и пара-хлоранилина примерно одинакова. В обоих случаях она больше, чем вязкость неассоциированного о-хлортолуола. Сходные данные получены для диоксипроизводных бензола [721 ] и нитроанилинов, хотя в этих соединениях картина еще более усложняется наличием межмолекулярных Н-связей. В данном случае образуются смешанные ассоциаты . [c.165]

    Температурная зависимость вязкости неассоциированных жидкостей более или менее удовлетворительно описывается формулой [c.220]

    Вязкость т получается в Па -с, если молярная масса берется в кг/моль, а плотность — в кг/м . Метод пригоден для грубой оценки вязкости при комнатной температуре у жидкостей, которые имеют точку замер ания пиже и точку кипения выше 20 "С. Метод совершенно непригоден, если в состав вещества входит сера. Для других неассоциированных жидкостей погрешность находится в предел, х 30%. Для кислот результаты оказываются слишком заниженными для хлорзамещенных углеводородов они зачастую слишком завышены. [c.159]

    I и р. Вязкость смесей нормальных (неассоциированных) жидкостей можно вычислить по формуле [c.134]

    Если перегоняемая смесь является неассоциированной жидкостью, то ее динамическую вязкость можно подсчитать по формуле [49] [c.308]

    Таким образом, эмульсия содержала намного больше агрегатов, чем неассоциированных капель, когда ее вязкость измеряли в первый раз. [c.305]

    Гипотеза масштабной инвариантности была распространена М. А Анисимовым ва зависящие от времени (кинетические) ФП. Предполагается, что вблизи критической точки кроме характерного размера гс существует также характерный временной масштаб гс - время релаксации критических флуктуаций, растущее по мере приближения к критической точке перехода. На масштабах гс имеем,- гс= гс /Д где Д - кинетическая характеристика, имеющая различный смысл для ФП разной природы. Для критической точки жидкость - газ Д -коэффициент температуропроводности, в растворах О - коэффициент молекулярной диффузии и т.д. Для неассоциированных жидкостей и растворов О определяется формулой Стокса -Эйнштейна Т/ 6 п г тс, где г) -коэффициент сдвиговой вязкости. Отсюда видно, что в критической точке имеет место динамический скейлинг. гс — , тс — л и 0- 0. С уменьшением коэффициента Д и ростом гс связаны аномальное сужение линии молекулярного рассеяния света и аномальное поглощение звука вблизи критических точек жидкостей и растворов. [c.24]


    Нахождение величины W, например У или т]., в этих сложных случаях может быть основано на определении кажущихся свойств. Так, кажущийся мольный объем V неассоциированного компонента В в бинарной смеси с бензолом может быть найден по уравнению (У,37а) или соответственно для вязкости — по уравнению (У,37б). [c.246]

    Для расчета вязкости смеси двух неассоциированных жидкостей используется уравнение Аррениуса  [c.40]

    Температурная зависимость а по предложению Варгафтика может быть определена двумя способами. Прежде всего необходимо выяснить, является ли данная жидкость ассоциированной или неассоциированной. Поскольку общей теории ассоциации жидкостей нет, приходится пользоваться эмпирическими способами. Для неассоциированных жидкостей формула Бачинского для вязкости [c.304]

    Вязкость смеси взаимно-растворимых и неассоциированных жидкостей может быть найдена по уравнению [c.32]

    Вязкость бинарной смеси неассоциированных жидкостей является функцией состава [c.510]

    Вязкость смеси неассоциированных жидкостей (молекулы которых не соединяются в группы)  [c.20]

    Динамический коэффициент вязкости смеси неассоциированных жидкостей определяется по формуле (2.14). [c.258]

    Вязкость жидкостных смесей Цсм не подчиняется правилу аддитивности она часто превосходит вязкость отдельных компонентов. Для неассоциированных жидких смесей часто пользуются формулой Кендалла  [c.20]

    Определим Для тиофена, растворенного в гексане при 40 °С. Гексан является неассоциированным растворителем и для него X = 1,0 = 86 значение Уь найдено в предыдущем примере и равно 88,1 (тиофен). Вязкость гексана при 40 °С равна 0,262 сПз. Подставляя эти значения в уравнение 1.23, получим  [c.32]

    Такой способ расчета Лсм обычно применяется в том случае, когда смесь образуют нормальные (неассоциированные) жидкости. Вязкость эмульсий определяется эмпирическим уравнением [2]  [c.26]

    Существование литийорганических соединений в неполярных средах в виде ассоциатов хорошо известно. Например, этиллитий в растворе гептана, по данным инфракрасной спектроскопии, представляет собой гексамер [80]. На ассоциацию растущих цепей указывают также другие факты. Так, при введении в реакционную смесь после полного завершения полимеризации агента, разрушающего активные комплексы (спирта и т. п.), вязкость раствора резко падает. Как показал Мортон [78] для полимеров стирола, бутадиена и изопрена, изменение вязкости отвечает уменьшению молекулярного веса в два раза. Следовательно, макромолекулы, освободившиеся при дезактивации от атомов лития (т. е. центров ассоциации), переходят из димерной формы в неассоциированную. Существенно, что изменение вязкости под влиянием агентов обрыва обнаружено только для живых цепей, полученных в углеводородной среде, но не в полярных растворителях. Как следует из уравнений ( -46—49), скорости реакций инициирования и роста [c.347]

    Вязкость зависит не только от температуры и давления, но и от свойств молекул, из которых состоит жидкость. Такими свойствами могут быть объем Ум, форма Ф, масса т, дипольный момент я и поляризуемость а молекул. Эту проблему изучал Луцкий [20], сравнивая вязкость нормальных, неассоциированных жидкостей в изологических рядах соединений, подобранных таким образом, чтобы их молекулы отличались одним каким-либо свойством (например, поляризуемостью, дипольным моментом и т. п.). [c.295]

    Во многих случаях определения вязкости смесей неассоциированных, подобных одна другой неполярных жидкостей расчет по уравнению (У1П-54) дает удовлетворительные результаты. [c.327]

    Вязкость. Хотя измерения вязкости не являются особенно чувствительным методом обнаружения Н-связей, все же можно сказать, что вязкость ассоциированных соединений обычно больше, чем вязкость аналогичных неассоциированных веществ. [c.60]

    При известном значении вязкости при температуре Т1 можно определить вязкость неассоциированных жидкостей/при другой температуре Гг, пользуясь диаграммой Льюиса и Сквайрса (рис. ХП. 7). На оси ординат отмечают известное значение Х(. Затем проводят прямую до пересечения с кривой и из полученной точки опускают перпендикуляр на ось абсцисс, т. е.> определяют температуру и температурный интервал. Цо этому интервалу можно установить искомую вязкобть при любой температуре, производя все определения в обратном порядке. [c.260]

    Дальнейшее развитие науки о вязкости также неразрывно связано с деятельностью русских и советских ученых. А. И. Ба-чинский предложил общее уравнение зависимости вязкости неассоциированных жидкостей от температуры [1]. Я. И. Френкель первый вывел теоретически обоснованное экспоненциальное уравнение, показывающее зависилтость вязкости жидкостей от температуры [2]. Работы П. А. Ребиндера и его сотрудников, исследования Б. В. Дерягина, М. М. Кусакова, М. П. Воларо-вича, Г. В. Виноградова, Д. С. Великовского, Д. М. Толстого, Г. И. Фукса и др. сыграли решающую роль в применении к нефтепродуктам реологии — учения о механических свойствах дисперсных и аморфных веществ. Это позволило интерпретировать явления вязкости масел, смазок и битумов с позиций классической теории упругости и учения о деформации тел [3]. [c.315]

    Реакция отверждения полимеров с концевыми эпоксиуретановыми фрагментами подчиняется соответственно первому или второму порядку, который сохраняется до самых высоких значений конверсии, несмотря на резкое возрастание вязкости системы. Процесс контролировался до точки геля по расходу эпоксигрупп, а после точки геля — по изменению степени набухания. Соответствующие константы скорости зависят от начальной коицентра-ции реагирующих групп в логарифмических координатах станта возрастает пропорционально начальной концентрации в степени 3—6. Это явление может быть интерпретировано при предположении об образовании многомерных ассоциатов концевых фрагментов полимерных молекул, причем реакционноспособность эпоксиуретановых групп, входящих в состав ассоциатов, значи-. тельно выше, чем реакционноспособность неассоциированных групп. [c.441]


    Если учесть, что в условиях применения нефтепродуктов температурный режим смазки может довольно заметно колебаться и что вязкость нефтепродуктов изменяется не пропорционально изменению температуры, то станет понятным, почему на практике изменению вязкости с температурой придают исключительно большое значение, поскольку вязкость определяет гидродинамический режим смазки. Н есмотря на значительное количество работ, посвященных изучению зависимости вязкости от температуры, этот вопрос может считаться решенным (и то лишь отчасти) только для нормальных неассоциированных жидкостей. В отношении же сложных и ассоцииро- [c.256]

    Гретц, Егер, Бачинский, Мак-Леод, Раман и другие исследователи [88] иывели формулы зависимости вязкости жидкостей от температуры, исходя из различных теоретических предпосылок, однако эти формулы оказались пригодными только для случая нормальных неассоциированных жидкостей, для которых характерны не слишком высокие значения вязкости и сравнительно медленное убывание ее с температурой. [c.257]

    Выражение (3.3) показывает, что зависимость логарифма коэффициента вязкости от обратной температуры должна быть римолинейной. Это действительно наблюдается для неассоциированных жидкостей типа бензола и тетрахлорида углерода. Для воды зависимость коэффициента вязкости от температуры не описывается приведенным соотношением, что обусловлено частичным разрушением структуры водородных связей с повышением температуры. [c.77]

    Вязкость жидкости зависит от температуры и давления. Как правило, с увеличением температуры вязкость жидкости падает. С другой стороны, увеличение давления вызывает увеличение вязкости. Для неассоциированных ж ижостей А. И. Бачинский (1913) нашел весьма простое соотношение между вязкостью т) и удельным объемом жидкости  [c.69]

    Штаудингер, наблюдая очень высокую вязкость даже низкоконцентрированных растворов высокомолекулярных соединений, высказал предположение о существовании очень длинных, неассоциированных между собой молекул, размеры которых обусловливают все особенности высокомолекулярных соединений. Для доказательства своей теории Штау- [c.50]

    Межмолекулярные взаимодействия в таких жидкостях чаще всего имеют характер слабых ван-дер-ваальсовых, что не исключает развития молекулярной ассоциации. Типичны в этом отношении нефтяные масла и индивидуальные масляные углеводороды, обладающие аномально высокой зависимостью вязкости от температуры. Современные теории неассоциированных жидкостей позволяют оценить зависимость их вязкости от температуры так, согласно Я. И. Френкелю [12], развившему дырочный механизм течения жидкостей, [c.162]


Смотреть страницы где упоминается термин Вязкость неассоциированных: [c.694]    [c.702]    [c.259]    [c.221]    [c.25]    [c.320]    [c.72]    [c.46]    [c.24]    [c.513]    [c.304]    [c.46]    [c.61]   
Расчеты основных процессов и аппаратов нефтепереработки (1979) -- [ c.39 , c.40 ]

Расчеты основных процессов и аппаратов нефтепереработки Изд.3 (1979) -- [ c.39 , c.40 ]




ПОИСК







© 2025 chem21.info Реклама на сайте