Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Иенеке

    КРИВАЯ РАВНОВЕСИЯ НА ПРЯМОУГОЛЬНОЙ ДИАГРАММЕ ИЕНЕКЕ [c.35]

    В прямоугольной системе Иенеке на ось абсцисс наносится содержание компонента В по отношению к содержанию компонентов А и В [c.35]

    Иенеке близки к свойствам треугольной, поэтому с ее помощью можно представить процесс смешения двух жидкостей или разделения смеси, а также процесс образования двух равновесных фаз из смеси исходного раствора с растворителем. Чистый компонент А представляет точка начала координат (6=0 с=0), чистый компонент В—точка с координатами 6 = 1 с=0, чистый растворитель— [c.36]


Рис. 1-19. Кривая равновесия в системе Иенеке Рис. 1-19. <a href="/info/13759">Кривая равновесия</a> в системе Иенеке
    Ход экстракции иногда целесообразно представить в прямоугольной системе Иенеке. Одноступенчатая экстракция показана на рис. 2-10 п 2-11. [c.102]

Рис. 2-10. Диаграмма Иенеке для одноступенчатой экстракции. Рис. 2-10. <a href="/info/934894">Диаграмма Иенеке</a> для одноступенчатой экстракции.
Рис. 2-11. Диаграмма Иенеке для одноступенчатой экстракции с циркуляцией растворителя. Рис. 2-11. <a href="/info/934894">Диаграмма Иенеке</a> для <a href="/info/153234">одноступенчатой экстракции</a> с циркуляцией растворителя.
    При большом числе ступеней и низких концентрациях изображение процесса на треугольной диаграмме может оказаться недостаточно точным, и в этом случае целесообразнее воспользоваться диаграммой Иенеке. Она применяется как для систем с полным отбором продуктов, так и для систем с возвратом. [c.174]

Рис. 2-57. Определение числа ступеней для противоточной экстракции с возвратом при помощи диаграммы Иенеке Рис. 2-57. <a href="/info/1685334">Определение числа ступеней</a> для <a href="/info/5754">противоточной экстракции</a> с возвратом при <a href="/info/572733">помощи диаграммы</a> Иенеке
Рис. 2-58. Минимальный возврат на диаграмме Иенеке. Рис. 2-58. Минимальный возврат на диаграмме Иенеке.

    Рпс. 2-59. Минимальный возврат на диаграмме Иенеке (растворитель чистый, продукты без растворителя). [c.178]

Рис. 2-60. Полный возврат, минимальное число ступеней (диаграмма Иенеке). Рис. 2-60. <a href="/info/1023711">Полный возврат</a>, <a href="/info/332493">минимальное число ступеней</a> (диаграмма Иенеке).
Рис. 2-61. Полный возврат, минимальное число ступеней (растворитель чистый, диаграмма Иенеке). Рис. 2-61. <a href="/info/1023711">Полный возврат</a>, <a href="/info/332493">минимальное число ступеней</a> (<a href="/info/224219">растворитель чистый</a>, диаграмма Иенеке).
    Определить минимальное число ступеней (графическим методом Иенеке) минимальные возвраты число ступеней для возврата экстракта, в 2,2 раза превышающего минимальный и главные потоки жидкости. [c.179]

    Определим координаты исходного раствора на диаграмме Иенеке  [c.180]

    Количество исходного раствора 5= 100 моль. В координатах Иенеке  [c.180]

    Изотермическая диаграмма плавкости тройной безводной взаимной системы может быть изображена с помощью равностороннего треугольника способом Иенеке. Сумму концентраций обоих катионов и одного аниона (или обоих анионов и одного катиона) принимают за 100%, например В + С + У = 100%. Тогда концентрации В, С и У можно изображать в треугольнике (рис. 5.44). Вершина В соответствует 100% иона В, 0% СиО% У. Но в точке В концентрация X также равна 100% (так как В + С = X + У). Поэтому вершина В треугольника является фигуративной точкой чистой соли ВХ. Аналогично в вершине С — чистая соль СХ. Точки чистых солей ВУ и СУ находятся на серединах боковых сторон треугольника (здесь концентрации иона У и ионов В или С равны 50%). Диаграмма плавкости изображается в нижней части треугольника — в трапеции ВХ—СХ—СУ ВУ, верхняя же часть треугольника ВУ—У—СУ не используется. На рис. 5.44 показаны границы полей кристаллизации четырех солей поле каждой соли примыкает к точке ее состава. Если на перпендикулярах, восстановленных из фигуративных точек этой плоской диаграммы, откладывать температуру плавления, получится пространственная политермическая диаграмма плавкости системы (призма). [c.168]

    Квадратная диаграмма Иенеке [c.169]

    Значительно более удобной и обычно применяемой является квадратная диаграмма Иенеке (рис. 5.45). Любая точка этой диаграммы изображает ионный состав солевой массы системы. Долю каждого иона выражают в процентах, а за 100% принимают и сумму катионов, и сумму анионов 5 + С = Х+ К= 100%. В точках систем, лежащих на линии ВХ—СХ, содержание иона X равно 100%, а иона У —0%. Точки на линии ВУ—СУ, наоборот, соответствуют системам, в которых содержится 100% иона У и 0% иона X. Точки же внутри квадрата соответствуют системам, в которых содержится и ион X, и ион У, причем по правилу рычага их количества обратно пропорциональны расстояниям от точки системы до соответствующих сторон квадрата. Так, для точки т  [c.169]

    Так как общее число молей всех солей, входящих в систему, равно количеству катионов или анионов, т. е. 100%, то проще всего выразить солевой состав в индексах Иенеке, 1. е. в молях каждой соли на 100 моль суммы солей (в молярных процентах солевого состава системы). Допустим, что Ь с х. [c.169]

    На рис. 5.61 показан способ построения центральной проекции изотермы растворимости взаимной системы солей, а на рис. 5.62 — вид квадратной диаграммы Иенеке, полученной в результате такого [c.179]

    Все точки квадратной диаграммы дают лишь состав солевой массы системы содержание воды в ней по такой диаграмме определить нельзя. Для этой цели следует нанести на диаграмму линии изогидр или построить водную диаграмму (ср. рис. 5.54 и 5.55). Обычно рядом или над квадратной диаграммой строят проекционную водную диаграмму (рис. 5.63). Ординаты точек, лежащих на проекциях поверхностей насыщения этой диаграммы, отвечают числу индексов Иенеке, т. е. [c.180]

    Упомянем мельком о резко отличном от описанных выше способе Иенеке изображения систем, образованных двумя солями с общим ионом и водой на оси состава наносят выраженный в мольных процентах состав солевой массы раствора, [c.70]

Рис. 74. Пространственная изотермическая (10") диаграмма растворимости системы Ыа, М II С1, 504 + Н2О по методу Иенеке. Рис. 74. <a href="/info/1720621">Пространственная изотермическая</a> (10") <a href="/info/500508">диаграмма растворимости системы</a> Ыа, М II С1, 504 + Н2О по методу Иенеке.

Рис. 75. Плоская изотермическая ( 0°) диаграмма растворимости системы N3, М -ЛС , 504 + Нг0 по методу Иенеке. Рис. 75. <a href="/info/336136">Плоская изотермическая</a> ( 0°) <a href="/info/500508">диаграмма растворимости системы</a> N3, М -ЛС , 504 + Нг0 по методу Иенеке.
    Этот способ более известен под названием способа Иенеке, который широко применял его в своих работах. Недостаток этого способа заключается в том, что фигуративная точка чистой воды лежит в бесконечности, а фигуративная точка состава разбавленных растворов — очень высоко. Если вместо числа молей воды М, приходящихся на 100 молей солевой массы, откладывать величину К, связанную с М соотношением N = 100 М/(100 + + М) (величина N представляет собой мольный процент воды в растворах), то для чистой воды получаем не бесконечность, а 100, что устраняет указанный выше недостаток, но усложняет пользование диаграммой. [c.177]

    Ниже в этой главе (а также в других, в которых встречаются взаимные системы) будем говорить о молях, мольных процентах, имея в виду моль-эквивалентные количества. Состав изображается в квадрате (рис. ХХ.1), вершины которого соответствуют моль-эквивалентам четырех солей уравнения реакции обмена, стороны — двойным системам, содержаш,им общий ион. Такой квадрат называется квадратом Иенеке [1]. В нашей литературе основные представления о взаимных системах даны в работах [2, 3]. На концах каждой диагонали стоят формулы солей без общего иона. Состав, выраженный в мольных процентах трех солей, изображается точкой. Он находится в двух из четырех прямоугольных треугольников, иа которые можно разбить квадрат диагоналями. Выбирается треугольник, вершины которого соответствуют солям, входящим в состав смеси. Фигуративную точку смеси находят первым методом Розебома для простых тройных систем, описанным в разделе XVI. 1. Положение точки определяется в прямоугольной системе координат, осями которой служат две прилегающие к одной и той же вершине (началу координат) стороны квадрата. В соответствии со сказанным выше о возможности выражения состава через две тройки солей, фигуративная точка находится не только в том треугольнике, выбор которого определен солями смеси, но и в другом треугольнике с общим катетом (см. рис. ХХ.1) точка F находится в треугольниках ВУ—ВХ—AY и BY—АХ—AY с общим катетом AY—BY. Таким образом, ее положение в квадрате не зависит от того, через какую из этих двух троек солей был выражен состав смеси. Если состав смеси выражается через две соли без общего иона, то его фигуративная точка находится на диагонали, а ее абсцисса и ордината равны. [c.258]

    Кроме квадратной диаграммы, для изображения составов тройных взаимных систем применяется еще треугольная диаграмма, предложенная также Иенеке [1]. В этом случае концентрации ионов (эквивалентов) пересчитываются таким образом, чтобы сумма концентраций двух одноименных ионов и одного разноименного с ними была равна 100 например, [c.260]

Рис. ХХП.6. Изотерма растворимости двух солей с общим ионом, построенная по так называемому способу Иенеке Рис. ХХП.6. <a href="/info/334118">Изотерма растворимости</a> <a href="/info/1696521">двух</a> солей с <a href="/info/133026">общим ионом</a>, построенная по так называемому способу Иенеке
    J pивeдeнныe выше уравнения определяют величину потоков р и И и положение точек, которые им соответствуют на диаграмме Иенеке. Точки эти носят название полюсов. При графических решениях задач экстракции пользуются ими таким же образом, как на треугольной диаграмме  [c.175]

    Равновесные составы взяты из работы Дарвента и Винклера [15]. Применена система Иенеке, доли компонентов выражаются в молях. Таким образом  [c.180]

    JgN Иенеке, Ле Шателье Ч етырех-гранная призма [c.134]

    Состав изображается в квадрате (рис. 13.15), вершины которого соответствуют моль-эквнвалеитам четырех солей реакции обмена, стороны двойным-системам, содержащим общий ион. Такой квадрат называется квадратом Иенеке. На концах каждой диагонали стоят формулы солей без общего иона. Состав, выраженный в мольных процентах трех солей, изобрая ается точкой. [c.278]

    Для построения диаграммы растворимости четверной взаимной системы с растворителем применяют обычно методы Лёвенгерца и Иенеке. [c.111]

    Для построения диаграммы по способу Иенеке прежде всего определяют состав солевой массы данного раствора, выражая его числом молей трех солей в 100 мо- лях этой массы. Пусть, например, состав солевой массы выразится так Ь молей МнгСи, а молей М 504 и с молей Mg l2, причем [c.113]

Рис. XV 1.10. Способ Ban Рейна—Ван Алкемаде для изображения состава тройных систем (так называемый способ Иенеке) Рис. XV 1.10. Способ Ban Рейна—Ван Алкемаде для <a href="/info/1757501">изображения состава</a> тройных систем (так называемый способ Иенеке)
    Опишем еще четвертый способ, известный как способ Иенеке (см. раздел XVI. 1) [2]. Принимаем сумму концентраций солей (в молях), называемую олевой массой, за 100 и откладываем полученный таким образом состав [c.281]


Смотреть страницы где упоминается термин Иенеке: [c.103]    [c.174]    [c.134]    [c.113]    [c.117]    [c.118]    [c.282]   
Смотреть главы в:

Жидкостная экстракция в химической промышленности -> Иенеке


Основы физико-химического анализа (1976) -- [ c.0 , c.176 , c.177 ]

Дистилляция в производстве соды (1956) -- [ c.24 , c.26 ]




ПОИСК







© 2025 chem21.info Реклама на сайте