Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скорость в реальном адсорбированном сло

    Кривые для суммарных смол, выделенных из остаточного рафината, имеют больший тангенс угла наклона, чем для суммарных смол из депарафинированного масла и петролатума. Следовательно, при наличии в растворе полярных молекул ПАВ (присадок и смол) следует учитывать увеличение адсорбционной активности вследствие дополнительных электростатических сил взаимодействия ПАВ между собой и с поверхностью кристалла (адсорбента). При охлаждении такой системы с момента образования зародышей твердой фазы начинается процесс адсорбции смол и присадки на поверхности кристаллов. Наиболее вероятен в данном случае усложненный механизм построения адсорбционного слоя поверхностно-активных веществ на неоднородной поверхности твердой фазы. Насыщенный адсорбционный слой ПАВ для неоднородной в энергетическом отношении поверхности кристаллов, какой следует считать большинство реально существующих поверхностей твердых сорбентов в природе, может быть различной толщины на разных участках поверхности. При добавлении малых количеств присадки происходит адсорбция их молекул на наиболее активных участках гидрофобной поверхности кристаллов твердых углеводородов, при этом дифильные молекулы ПАВ ориентируются полярной частью в раствор, а углеводородным радикалом — на поверхности частиц твердых углеводородов. Это приводит к совместной кристаллизации молекул присадки и твердых углеводородов, которая способствует образованию крупных агрегированных структур, что, в свою очередь, увеличивает скорость фильтрования суспензии остаточного рафината. С увеличением содержания ПАВ в растворе одновременно с адсорбцией молекул на менее активных участках поверхности кристаллов происходит образование второго слоя молекул с обратной их ориентацией, т. е. полярной частью на поверхность твердой фазы. При этом присадка и смолы адсорбируются по всей поверхности кристаллов, не внося существенных изменений в их форму, но препятствуя росту кристаллов, а это снижает скорость фильтрования суспензии. [c.173]


    Реальные условия эксперимента при исследовании. кинетики хорошо адсорбирующихся газов из постоянного объема на последних стадиях соответствуют процессу выравнивания концентрации адсорбата по сечению зерна. Из-за скоротечности первой стадии процесса (поглощение газа) и заметного влияния площади внешней поверхности адсорбента на начальную скорость адсорбции на этой стадии определение коэффициентов диффузии при адсорбции из постоянного объема может привести к большим погрешностям, особенно на конечной стадии адсорбционного процесса. [c.58]

    Катализ на неоднородных поверхяо<т1х. Модель идеального адсорбир. слоя, как наиболее простая, широко Применяется для описания кинетики гетерогенно-каталитич. р-ций. Она, однако, не всегда способна описать количественно явления на пов-стях реальных катализаторов. Напр., скорость адсорбции не пропорциональна 06, а зависит от нее экспоненциально. В таких случаях необходимо отказаться по крайней мере от одного из Предположений модели идеального адсорбир. слоя либо считать места пов-стн неодинаковыми (т. наз. биОграфич. неоднородность), либо принять воз.можность взаимного влияния адсорбир. частиц (индуцир. неоднородность Пов-сти). Тогда термин одйо-родная поверхность будет означать почти то же, что И идеальный адсорбир. слой , однако допускается возможность адсорбции частицы на двух и более соседних местах пов-сти. [c.350]

    Общепринято считать, что двойной электрический слой, ограниченный между положительно заряженным (у катода — отрицательно заряженным) электродом и отрицательно заряженной областью раствора (слой Г ельмгольца), обладает свойствами конденсатора и имеет определенную емкость заряда. Он оказывает сильное влияние на электродные процессы. На рис. 8.2 приведена упрощенная схема двойного слоя. В реальных условиях электрохимического процесса явление осложняется адсорбцией на электроде веществ, присутствующих в растворе. Адсорбироваться могут молекулы растворителя, электродно-активные частицы, промежуточные и конечные продукты реакции. Структура и свойства двойного электрического слоя усложняются, так же как и скорость разряда электродно-активных частиц, так как на электродах возникают адсорбционно-десорбционные процессы, препятствующие электролизу. [c.292]

    Другими словами, в соответствии с уравнением Шилова прн бесконечно большой скорости (мгновенной) адсорбции завися--мостьг = / (Я) является линейной (прямая ОА на рис. ХП1-6, е). В действительности скорость адсорбции конечна, поглощаемый компонент адсорбируется це мгновенно, а перемещается некоторое время с общим потоком, поэтому реальное время защитного действия т <3 т . Зависимость т = / (Я) выразится прямой ВС (рис. ХП1-6, в), параллельной ОА и отсекающей на оси ординат отрезок То, уравнение этой прямой  [c.628]


    Определения скорости элюирования зоны и коэффициента емкости колонки в газоадсорбционной хроматографии такие же, как в газожидкостной хроматографии. Что касается коэффициента емкости колонки, это объясняется тем, что ири обычных для ГХ низких давлениях газ-носитель практически не адсорбируется адсорбентом, используемым в качестве неподвижной фазы. Поэтому в первом ириблин<ении поверхность адсорбента свободна и нет конкуренции молекул газа-носителя с компонентами пробы за адсорбент ситуация очень отличается от того, что мы имеем в жидкостной хроматографии. Соответственно в ГАХ не существует реальной тр Дности в определении времени задержки газа (т. е. времени удерживания инертного, неудерживаемого, вещества) и в нахождении подходящего вещества-метки для измерения to. Однако следует заметить, что [c.97]

    Прежде чем перейти к краткому обзору современных методов получения воспроизводимых или так называемых чистых поверхностей, произведем простую оценку времени, необходимого для загрязнения поверхности при определенных внешних условиях. Число соударений молекул газа при давлении р с единицей площади плоской поверхности равно р1 2пткТу/ , где Т — абсолютная температура, а т — масса молекулы газа. Эта формула позволяет нам подсчитать, что при комнатной температуре и давлении в 1 ммрт. ст. примерно 4 X 10 молекул (предположим, азота) соударяется ежесекундно с каждым 1 см поверхности. Если допустить, что коэффициент прилипания, представляющий собой вероятность того, что молекула газа, столкнувшись с поверхностью, будет действительно адсорбирована на ней, равен 0,25 (это вполне реальное значение [4]), то, следовательно, поверхность будет покрыта монослоем загрязняющего вещества примерно за 1 мксек. При остаточном давлении 10" мм рт. ст. время загрязнения увеличивается примерно до 1 сек, тогда как в ультравысоком вакууме оно составляет примерно 10 сек. Следовательно, чтобы уменьшить скорость загрязнения поверхности, целесообразно снизить давление. Но было бы ошибкой считать, что любой эксперимент, выполненный на поверхности, которая была приготовлена при умеренном остаточном давлении (скажем, 10 мм рт. ст.), следует считать неполноценным вследствие загрязнения поверхности. В этом случае действительное число молекул газа, способных еще адсорбироваться на поверхности, очень велико [4, 51 так, при комнатной температуре и давлении рт.ст. [c.68]

    Основное применение (со)полимеров АА - использование в качестве флокулянтов. Большая часть производимых в СССР и во всем мире (со)полимеров АА находит практическое применение в качестве флокулянтов в горнодобывающей, бумажной, металлургической, легкой, пищевой, угольной, не фтедобывающей промышленности. Более подробно остановимся именно на этой области применения (со)полимеров АА. Действие высокомолекулярных водорастворимых флокулянтов [в том числе и (со)полимеров АА] основано главным образом на двух механизмах. Первый - мостичный механизм флокуляции макромолекулы адсорбируются на взвешенных частицах, связывая их в единый ансамбль - флокулы [24]. Второй - нейтрали-зационный механизм флокуляции заряженные макроионы адсорбируются на заряженных дисперсных частицах, нейтрализуя их и тем самым снижая кинетическую (седиментационную) устойчивость системы [25]. Для (со)полимеров АА высокой молекулярной массы определяющим является, как правило, мостичный механизм флокуляции. Эффективность действия (со)полимеров АА для реальных дисперсных систем зависит от большого числа параметров, во многих случаях затруднена оценка влияния каждого конкретного фактора на результирующий макроскопический флокулирующий эффект, поэтому возникла необходимость всесторонних исследований (со)полимеров АА как флокулянтов прежде всего на модельных дисперсных системах (ДС). В качестве модельных ДС были апробированы охра, каолин и оксид меди. Влияние различных факторов на флокулирующие показатели (со)-полимеров АА приведено в обзоре [26]. Эксперименты были спланированы таким образом, чтобы обеспечить конкретную оценку влияния лишь одного параметра системы при сохранении неизменными всех других параметров. Рассмотрим влияние отдельных факторов на процесс флокуляции (со)полимеров АА в модельных ДС. При использовании ПАА и сополимеров на основе АА для ускоренной седиментации реальных ДС концентрация дисперсной фазы Сд может изменяться в широких пределах - от 0,002 до 40-50%. С ростом Сд закономерно уменьшается расстояние между частицами, растет суммарная поверхность раздела фаз. На модельных ДС были изучены особенности флокуляции (со)полимерами АА при варьировании Сд включая и область стесненного оседания (Сд>3%) [25]. Для количественной оценки флокупирующего эффекта используется безразмерный параметр В [27] D = v/vo-l, где м и о скорость седиментации соответственно с добавкой и в отсутствие флокулянта. Если Б > О, то полимерная добавка выступает в роли флокулянта, и чем больше О, тем выше флокулирующий эффект за счет вводимой добавки. Если же О < О, то вводимая добавка полимера работает как стабилизатор, т. е. способствует повышению седиментационной устойчивости системы. Использование относительного параметра В вместо V для оценки флокули- [c.175]



Смотреть страницы где упоминается термин Скорость в реальном адсорбированном сло: [c.288]    [c.56]   
Введение в кинетику гетерогенных каталитических реакций (1964) -- [ c.112 , c.118 , c.125 , c.128 , c.130 ]




ПОИСК





Смотрите так же термины и статьи:

Скорость в реальных адсорбированных слоя



© 2025 chem21.info Реклама на сайте