Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аморфные тела

    Кристаллическое тело обладает определенной, фиксированной температурой плавления, при которой происходит скачкообразное изменение агрегатного состояния вещества (переход из твердого состояния в жидкое или, минуя жидкое состояние, непосредственно в газообразное — процесс сублимации). Изменение агрегатного состояния аморфного тела происходит плавно, в широком температурном интервале. Поэтому температура плавления является физико-химической характеристикой только кристаллических тел. [c.35]


    Различие между кристаллическими и аморфными телами особенно резко проявляется в их отношении к нагреванию. В то время как кристаллы каждого вещества плавятся при строго определенной температуре и прн той же температуре происходит переход из жидкого состояния о твердое, аморфные тела ие имеют [c.163]

    Аморфные тела менее устойчивы, чем кристаллические. Любое аморфное тело в принципе должно кристаллизоваться и этот про  [c.158]

    Рассматривая аморфное тело как переохлажденную жидкость, оцепеневшую из-за очень больщой вязкости, следует помнить, что в отличие от жидкостей в аморфном веществе обмен между соседними частицами практически не происходит. Большая вязкость расплавов затрудняет движение и переориентировку молекул, что препятствует образованию зародышей твердой фазы. Поэтому прн быстром охлаждении жидкостей (расплавов) оии затвердевают не в кристаллическом, а в аморфном состоянии. [c.159]

    Другой особенностью кристаллов, отличающей их от аморфных твердых тел, является строгая определенность температуры их плавления — в процессе плавления температура не меняется. При нагревании же аморфных тел происходит их постепенное размягчение с образованием вязкой жидкости, причем отметить температуру перехода оказывается невозможным. У аморфных твердых тел обнаруживается текучесть, т. е. при длительном воздействии даже небольших нагрузок они меняют свою форму. [c.68]

    Для веществ, структура которых не характеризуется дальним порядком (аморфные тела, твердые растворы), очевидно, Sr = o>0. Нулевую энтропию (отличную от О величину S при [c.177]

    Для веществ, структура которых не характеризуется дальним порядком (аморфные тела, твердые растворы), очевидно, О- [c.35]

    В структуре стекла существуют аморфная и кристаллическая фазы, находящиеся в состоянии неустойчивого равновесия. Вследствие весьма высокой вязкости стеклянного расплава скорость кристаллизации его мала и равновесие почти полностью сдвинуто в сторону аморфной фазы, то есть стекло имеет преимущественно аморфную структуру. Поэтому стеклам присущи специфические свойства, характерные для аморфных тел  [c.315]

    В конденсированных телах полиэдры являются основной структурной единицей для создания каркаса решетки. Они входят в состав ансамблей полиэдров и элементарной ячейки. Ансамбли полиэдров, как правило, имеют аморфную структуру и создают решетку аморфных тел (синтетические алюмосиликаты, жидкие вещества), они также входят в состав элементарных ячеек, если они имеют упорядоченную структуру. Твердое тело с кристаллической решеткой построено из сочетания элементарных ячеек заданной сингонии и состава. [c.249]

    В отличие от кристаллических пористых тел избыточная свободная энергия аморфных структур определяется лишь величиной удельной поверхности. Поэтому спеканию аморфных тел не предшествуют процессы упорядочения структуры [120]. [c.54]


    Каждое твердое тело — металл, неметалл, кристалл и даже аморфное тело — может рассматриваться как более илн менее регулярная трехмерная решетка, образованная атомами. Каждый атом удерживается в своем положении упругими силами, которые являются функциями его положения и зависят от характеристик окружающих его атомов. Наиболее существенный вклад во внутреннюю энергию твердого тела вносится энергией тепловых колебаний атомов в решетке. Эти колебания являются трехмерными и могут быть разложены иа три независимых колебания вдоль трех осей координат. [c.189]

    Ионные соединения и металлы имеют более или менее совершенную кристаллическую структуру и при обычных условиях не образуют стекол, т. е. резко выраженных аморфных тел. Это объясняется тем, что простые ионы и атомы металлов имеют сферическую симметрию и соединяются друг с другом главным образом ненаправленными связями. Естественно, что когда эти вещества переходят в термодинамически равновесное состояние, их ионы и атомы укладываются плотнейшим образом как шары соответствующих размеров. [c.42]

    Рещение волнового уравнения Шредингера для кристаллов и аморфных тел приводит к различным результатам. В то время как энергетические состояния валентных электронов, принадлежащие твердому телу периодического строения, образуют квазинепрерывные зоны,—для веществ непериодического строения характерно локализованное состояние валентных электронов. Только при некоторой критической величине кинетической энергии собственные функции уравнения Шредингера [c.117]

    Суспензии — это дисперсные системы, иредставляющие собой взвеси твердых частиц в жидкостях концентрированные сусиепзш называют иногда пастами. Частицы дисперсной фазы суспензий — это мелкие кристаллики, а чаще обломк и кристаллических и.чи аморфных тел, практически нерастворимых в дисиерсиоиной среде. [c.192]

    Для многих кристаллических тел такие свойства, как прочность на разрыв, эластичность, тепло- и электропроводность, светопроницаемость, скорость растворения и т. д., имеют различные значения в зависимости от направления измерения. Такое свойство тел называется анизотропностью. Свойства же аморфных тел однородны во всех направлениях, т. е. не обладают анизотропностью эти тела изотропны. [c.35]

    Кристаллические и аморфные тела существенно различаются построению частицы в кристаллических телах размещены в строго определенной последовательности — чередуются через определен-2 35 [c.35]

    Аморфные вещества в отличие от кристаллических не имеют ясно выраженного порядка во взаимном расположении слагающих их частиц (рис. 7). Кроме того, аморфные тела изотропны, т. е. их свойства совершенно одинаковы по всем направлениям внутри тела. Эти вещества не имеют постоянной температуры плавления. При нагревании они сначала размягчаются в определенном интервале температур, затем, постепенно уменьшая свою вязкость, переходят в жидкотекучее состояние. При охлаждении эти расплавы вновь могут перейти в твердое состояние без образования кристаллической структуры. На рис. 8 приведены кривые нагревания аморфного (/) и кристаллического (2) веществ. [c.29]

    Учитывая большое сходство аморфных тел с жидкостями, их нередко рассматривают как переохлажденные жидкости. Это вполне оправдано, так как подтверждается экспериментом. Структура аморфных тел неустойчива и со временем, особенно при высокой температуре, в них самопроизвольно происходят изменения, направленные на установление более устойчивой, кристаллической структуры. [c.36]

    Понятие о кинетически стабильных элементах структуры в полимерах не имеет строгого количественного критерия, но чем больше т при прочих равных условиях, тем больше кинетическая стабильность данного элемента структуры. Практически же под кинетически стабильными понимаются те флуктуационные структурные элементы, время жизни которых превышает длительность исследуемого процесса. К образованию флуктуационных структур, характеризуемых большей или меньшей кинетической стабильностью, способны все гибкоцепные полимеры, в том числе эластомеры. С точки зрения структурных особенностей эластомеров их можно считать высокомолекулярными жидкостями с более сложной структурой, чем простые жидкости. Эластомеры находятся в жидком агрегатном состоянии, но отличаются очень высокой вязкостью, поэтому их можно назвать полимерными высоковязкими жидкостями. С другой стороны, эластомеры из-за их высокой вязкости при недлительных нагружениях по своим механическим свойствам подобны упругим твердым телам. К твердым телам относятся как кристаллические, так и аморфные тела (стекла). Жидкости характеризуются непрерывно изменяющейся структурой, которая зависит от температуры Т и давления р. Для твердых же тел характерна неизменность структуры в области существования твердого состояния с данным типом структуры. Таким образо , твердое состояние ве-и ества отличается от жидкого не только структурой, но и ее постоянством при изменении внешних условий. При этом для кристаллов характерны наличие дальнего порядка и термодинамическая стабильность, а для стекол — наличие ближнего порядка и кинетическая стабильность (время жизни структурных элементов в стекле обычно существенно выше времени наблюдения). [c.25]


    Это подтверждается измерением длины свободного пробега фононов в полистироле. При плотности полистирола р=1052 кг/м значения теплопроводности X и теплоемкости С соответственно равны Х=0,165 Вт/(м-К) и С=1,33 кДж/ (кг К). Приняв скорость V фононов в аморфном теле равной 1,5-10 м/с и подставляя значения X, С и у в формулу Л= /зС/, получим для полистирола I— = 0,236 нм. По порядку величины это согласуется с данными Кобеко [32], согласно которым длина свободного пробега фононов для стекла составляет 0,7—1 нм и близка к значениям расстояний между молекулами. [c.257]

    К наиболее приемлемым формулировкам понятия неорганического стекла относятся две — комиссии по терминологии АН СССР (1939) и американского общества испытания материалов США (1950). Определение комиссии АН СССР Стеклом называются все аморфные тела, получаемые путем переохлаждения расплава независимо от химического состава и температурной области затвердевания и обладающие в результате постепенного увеличения вязкости механическими свойствами твердых тел процесс перехода из жидкого состояния в стеклообразное должен быть обязательно обратимым . Определение американского общества испытания материалов Стекло—это неорганический продукт плавления, охлажденный до твердого состояния без кристаллизации. Стеклу присущи такие характерные свойства, как твердость, хрупкость и раковистый излом. Оно может быть бесцветно или окрашено, прозрачно или непрозрачно . [c.188]

    Однако резко противопоставлять аморфные тела кристаллическим не следует, так как многие вещества можно получить как в кристаллическом, так и в аморфном состоянии. Например, кварц . Ог существует в природе в кристаллическом (горный хрусталь) и аморфном состоянии (опал). Кроме того, современные рентгенографические и электронографические исследования показали, что во многих телах, которые раньше считали аморфными (например, аморфные формы кварца или углерода), расположение атомов не является вполне хаотичным. Они содержат мельчайшие зародыши кристаллов размерами 10- —10- м. И только чрезвычайно высокой вязкостью, которая быстро нарастает при охлаждении вещества, можно объяснить отсутствие дальнейшего развития (роста) этих кристаллов. [c.29]

    Вследствие сходства во внутренней структуре жидкостей и аморфных тел последние часто рассматриваются как жидкости с очень высокой вязкостью, а к твердым телам относят только вещества в кристаллическом состоянии. Уподобляя аморфные тела жидкостям, следует, однако, помнить, что в аморфных телах, в отличие от обычных жидкостей, частицы имеют незначительную подвижность — такую же, как в кристаллах. [c.164]

    Стеклом называют все аморфные тела, полученные путем переохлаждения расплава, независимо от их химического состава и температурной области обратимого перехода из жидкого состояния в стеклообразное (затвердевания). Стекла обладают механическими свойствами твердых тел. [c.642]

    В отношении внутреннего строения различие между кристаллическим и аморфным состояниями вещества состоит в следую1И,ем. Упорядоченное расположение частиц в кристалле, отражаемое элементарной ячейкой, сохраняется на больших участках кристаллов, а в случае хорошо образованных кристаллов — во всем их объеме. В аморфных телах упорядоченность н раеположеиии частиц наблюдается только на очень малых участках. Кроме того, в ряде амор(()иых тел даже эта местная упорядоченность носит лишь приблизительный характер. Это различие можно коротко сформулировать следующим образом структура кристаллов характеризуется дальним порядком, структура аморфных 1СЛ — бли ж н и м. [c.164]

    Типичными аморфными телами являются силикатные стекла, поэтому часто аморфное состояиР1е называют стеклообразным, понимая под стеклом аморфно (т. е. без кристаллизации) застывший [c.159]

    Различие между кристаллическими и а.морфмыми телами особенно резко проявляется в их отношении к нагреванию. В то вре.мя как кристаллы каждого вещества плавятся прп строго определенной техшературе и при той же температуре происходит переход из жидкого состояния и твердое, аморфные те. ла не имеют определенной температуры плавления. При нагревании аморфное тело постепенно раз.мягчается, начинает растекаться и, наконец, становится совсем жидки. г. При охлаждении оно также гюстепепио затвердевает. [c.163]

    В термодинамике под термином твердые тела подразумеваются только кристаллические тела [17, 79]. Аморфные тела при этом считают жидкими фазами, независимо от того, находятся ли они в жидком или твердом агрегатном состоянии. Поэтому различают только две фазы 1) аморфную, жидкую, неупорядоченную и 2) кристаллическую, твердую, упорядоченную [96]. В связи с этим некоторые авторы [17] аморфное, неупорядоченное состояние называют псевдотвердым. Такой трактовки придерживаются в металлургии, а также при изучении механических свойств органических полимерных веществ. С этих же [c.163]

    При эксп.пуатации полимеров и материалов на их основе одними из наиболее важных являются их механические свойства. Д я кристаллических тел до некоторой температуры степень его деформации под нагрузкой незначительна, а затем резко увеличивается из-за фазового перехода из кристаллического в жидкое состояние. Однако для стеклообразного (аморфного) тела изменение его деформации принимает другой вид (рис. 31.2). [c.615]

    Характерной особенностью кристаллов является анизотропия, или векториальность, свойств, т. е. неодиЕШКовость механических, тепловых, электрических, оптических свойств но различным направлениям. Например, если из кубического кристалла хлорида натрия вырезать два бруска — один перпендикулярно граням куба, другой по диагонали одной из граней — и испытать их иа разрыв, то окажется, что для разрыва второго бруска потребуется сила вдвое большая, чем для разрыва первого бруска. Анизотропия проявляется и в других свойствах кристаллов (теплопроводность, электрическая проводимость, поляризация света и пр.). В отличие от кристаллов аморфные тела, подобно жидкостям, и ю-тропны, т. е. их свойства проявляются одинаково, независимо от направления, в котором они измеряются. [c.68]

    Твердое щество может находиться в кристаллическом и аморфном состоянии. Для торо чтобы нагляднее представить себе различия мсжд) кристаллическими и аморфными веществами, а также между твердыми телами и жидкостями, рассмотрим более подробно вопрос об упорядоченности во взаимном расположении атомов или молекул в них. Упорядоченность, которая проявляется иа расстояниях, сравнимых с межатомными, является упорядоченностью ближнего порядка, а упорядоченность, повторяющаяся на иеограииченпо больших расстояниях,— дальнего порядка. Как известно, в газах (точнее, в идеальных газах) расположение молекулы в какой-либо точке пространства ие зависит от расположения других молекул, т. е. в них отсутствует дальний и ближний порядок. Что же касается жидкостей и аморфных тел, то в них уже существует ближний порядок, характеризующийся некоторой закономерностью в расположении соседних атомов. Дальний порядок в жидкостях и аморфных телах отсутствует, так как на больших расстояниях этот порядок размывается и постепенно переходит в беспорядок . [c.11]

    Китайгородский А.Н.-Рентгеноструктурный анализ мало1фисталли-ческих и аморфных тел. М..Изд-во технико-теор.лит-ры.1952. [c.8]

    К твердым атомных веществам относится огромное количество органических и неорганических полимеров, такие простые твердые вещества, как алмаз, кремний и другие неметаллы и металлы, а также твердые ионные соединения. Объединяющим показателем для них является то, гго эти вещества построены посредством межатомных связей. В отличие от молекулярных твердых соединений, которые всегда имеют кристаллическую структуру, атомные твердые вещества могут обладать как кристаллической, так и аморфной структурой. Металлы и ионные соединения характеризуются кристагшической структурой и в обычных условиях не образуют аморфных тел. Для полимерных материалов характерно пребывание в аморфном состоянии. Главным структурообразующим фактором для полимеров служат ковалентные связи, образующие одно-, двух- или трехмерные остовы -макромолекулярные части структуры полимерного материала. При помощи дополнительного структурообразующего фактора - ван-дер-ваальсовых и [c.108]

    Идеальный кристалл рассматривается как тело, построенное из атомов, расположенных строго по законам симметрии кристаллической решетки. В реальных веществах существует непрерывный переход от идеально правильного в геометрическом и физическом смысле кристалла к телам с полностью неупорядоченным расположением атомов — аморфным или стеклообразным. Идеальный кристалл, как и аморфное тело с полностью неупорядоченной структурой, является крайним членом этого ряда. Практически всегда имеют дело с промежуточными членами его. Часть реальных кристаллов примыкает к почти идеальным, степень неупорядоченности которых незначительна. Реальные аморфные тела в свою очередь сохраняют некоторую степень упорядоченности. Отклонения в строении реального кристалла от идеализированного с геометрически правильным расположением атомов называются дефектами кристаллической решетки. Дефекты оказывают большое влияние на свойства реальных кристаллов, а во многих случаях обусловливают проявление особых свойств, которые не присупхи кристаллам со структурой, близкой к бездефектной. [c.166]

    Важнейплей особенностью кристаллических образований является их способность самоограняться. Так, при выделении кристаллического вещества из раствора или из расплавленной массы оно принимает геометрическую форму определенных кристаллов с явно выраженными плоскими гранями. При достаточно сильном ударе крупные кристаллы распадаются на ряд более мелких кристаллов, которые ограничены плоскостями, пересекающимися между собой под определенным углом. Эта способность кристаллов раскалываться на слои по определенным плоскостям носит название спайности. Как известно, у аморфных тел это свойство отсутствует — поверхность излома их бывает неровной, раковистой. [c.30]


Библиография для Аморфные тела: [c.221]    [c.38]    [c.190]   
Смотреть страницы где упоминается термин Аморфные тела: [c.122]    [c.82]    [c.36]    [c.154]    [c.256]    [c.163]    [c.163]    [c.164]    [c.192]   
Смотреть главы в:

Структурный анализ жидкостей и аморфных тел -> Аморфные тела

Электронная микроскопия в физико-химических исследованиях -> Аморфные тела


Препаративная органическая химия (1959) -- [ c.32 ]

Симметрия глазами химика (1989) -- [ c.93 , c.433 ]

Препаративная органическая химия (1959) -- [ c.32 ]

Химия коллоидных и аморфных веществ (1948) -- [ c.150 , c.173 ]

Химия полимеров (1965) -- [ c.52 ]

Препаративная органическая химия Издание 2 (1964) -- [ c.32 ]

Краткий курс физической химии Издание 3 (1963) -- [ c.115 ]

Физическая химия Издание 2 1967 (1967) -- [ c.228 ]

Физическая химия (1967) -- [ c.650 ]




ПОИСК







© 2024 chem21.info Реклама на сайте