Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Связи ненаправленность

    На симметрию кристаллической решетки -элементов их (п - 1) -электроны практически не влияют. Но если атом металла содержит неспаренные -электроны, то эти электроны могут взаимодействовать с -электронами соседних атомов металла и образовывать дополнительные ковалентные связи. Аналогичное взаимодействие возможно и для р-элементов. В этих металлах существуют металлическая и ковалентная связи одновременно. Ковалентная локализованная связь обладает свойством направленности, а металлическая — ненаправленная связь. Поэтому первый вид связи обуславливает более упорядоченное состояние, а второй — менее упорядоченное, т. е. с большей энтропией. При более высоких температурах на структуре кристаллической решетки и свойствах простого вещества сказывается, в основном, наличие металлической связи. Понижение температуры приводит к уменьшению отрицательного энтропийного (—Т Д5) вклада в изменение энергии Гиббса и начинает преобладать более упорядоченная локализованная ковалентная связь. Типичным примером является олово. Так, стабильной модификацией олова при i > 13,2 °С является мягкий металл ( белое олово), в то время как при более низких температурах устойчивее серое олово, представляющее собой твердый и хрупкий порошок с кристаллической решеткой типа алмаза — кристалла, с ковалентной связью  [c.321]


    На первый взгляд парадоксально, что ненаправленные связи направляют отвердевание вещества по пути образования симметричных плотных структур, отличающихся высокой степенью упорядоченности, тогда как направленная связь толкает этот процесс в сторону образования аморфных веществ, которые выглядят как максимально разупорядоченные вещества. В самом деле, благодаря ковалентной составляющей связи атомы соединяются друг с другом в определенном порядке и в определенных положениях по отношению друг к другу, притом в одних и тех же, при одних и тех же условиях отвердевания. Пространственные конфигурации электронной волновой функции определяют взаимное расположение и порядок соединения атомов. Аморфные вещества вовсе не следует рассматривать как бесструктурные. Это вещества, обладающие крайне сложным, запутанным строением. Если для одного и того же состава вещества число вариантов кристаллической структуры весьма ограничено, число вариантов непериодической структуры для такого вещества бесчисленно велико. Примитивность кристаллических и сложность непериодических структур указывает на резкое различие творческих возможностей соответствующих структурообразующих факторов. [c.161]

    К образованию ионных связей приводит электростатическое притяжение между противоположно заряженными ионами. Электрическое поле, создаваемое ионами, сферически симметрично, поэтому ионные связи — ненаправленные. [c.104]

    Слово радиусы в настояш ем разделе поставлено в кавычки, так как атомы, связанные, например в молекуле СЬ, ковалентной связью, расположены друг от друга на минимальном расстоянии 2г (рис. 222). Из-за строгой направленности ковалентной связи размер атома по всем другим направлениям превышает это минимальное расстояние. В этих направлениях у него уже нет ковалентной связи, и его взаимодействие характеризуется ван-дер-ваальсовской сферой с определенным радиусом Н (поскольку ван-дер-ваальсовская связь является связью ненаправленной). Понятие о ван-дер-ваальсовских связях будет дано в последующем. [c.182]

    Итак, в рамках квантовомеханических рассмотрений можно утверждать, что металлическая связь ненаправленная. Поэтому для чистых металлов следует ожидать структуры плотнейших упаковок. Кристаллы металлов часто имеют структуры ПКУ, ПГУ или их различные модификации. Объемноцентрированная кубическая структура в принципе не является плотнейшей упаковкой, но она очень близко примыкает к ней. Пока еще нет объяснения различных кристаллических модификаций металлов, но теория трехцентровых взаимодействий, успешно примененная к кристаллам благородных газов и галогенидов щелочных металлов, по-видимому, открывает большие перспективы и в данном случае. [c.281]


    Если отвлечься от направленности электронных эффектов, то изменение 0-донорной и я-акцепторной способности заместителей в основном сказывается на эффективном заряде центрального атома увеличение о-донорных свойств заместителя приведет к падению величины ж уменьшению кислотных свойств группы КН в комплексе, а увеличение я-акцепторных свойств заместителя по тем же причинам должно вызвать увеличение кислотных свойств этой группы. Связь ненаправленных эффектов лигандов с изменением эффективного заряда центрального атома отмечалась в работе [68]. Примером влияния о-донорной способности заместителя на кислотные свойства воды может служить сравнение кислотных свойств изомерных аквокомплексов Р1(П)  [c.75]

    В основу ионной модели соединения положено электростатическое взаимодействие ионов. Ионы можно представить как заряженные шары, силовые поля которых равномерно распределяются во всех направлениях в пространстве. Поэтому каждый ион может притягивать к себе ионы противоположного знака в любом направлении. Иначе говоря, ионная связь в отличие от ковалентной характеризуется ненаправленностью. [c.96]

    Подчеркнем еще раз, что в чистом виде отвердевание, т. е. процесс фазового превращения вещества, наблюдается только в тех случаях, когда имеет место лишь одно межмолекулярное взаимодействие, существующие межатомные связи не разрываются и новые химические связи не образуются. Ненаправленность ван-дер-ваальсовских межмолекулярных связей предопределяет при этом плотнейшую укладку данных молекул или макромолекул, образование кристаллической структуры. Понятно, что при отвердевании ионных веществ и металлов благодаря ненаправленности ионной и металлической связей получается тот же результат, хотя в данном случае действуют не только межмолекулярные, но и межатомные связи. [c.6]

    Таким образом, существует два взаимодействующих, но не просто складывающихся, а противоборствующих структурообразующих фактора направленные ковалентные связи и ненаправленные ионные, металлические и ван-дер-ваальсовские связи. Если отвердевание вещества идет путем только межмолекулярного взаимодействия, образуются кристаллические вещества, состав которых подчиняется правилам стехиометрии. Но если одновременно с отвердеванием протекают еще и химические реакции, состав твердого вещества, естественно, становится более сложным. В тех случаях, когда удается его установить с достаточной точностью. [c.6]

    Ионные соединения и металлы имеют более или менее совершенную кристаллическую структуру и при обычных условиях не образуют стекол, т. е. резко выраженных аморфных тел. Это объясняется тем, что простые ионы и атомы металлов имеют сферическую симметрию и соединяются друг с другом главным образом ненаправленными связями. Естественно, что когда эти вещества переходят в термодинамически равновесное состояние, их ионы и атомы укладываются плотнейшим образом как шары соответствующих размеров. [c.42]

    Двум главным структурообразующим факторам направленной и ненаправленной составляющим связи, соединяющей структурные единицы в строении твердых веществ, отвечают два разных состояния твердого вещества, а именно плотнейшая упаковка при крайне бедном энергией кристаллическом состоянии и разуплотненная структура богатого энергией состояния, по традиции называемого аморфным, т. е. бесструктурным, хотя, как известно, аморфные вещества имеют структуру, которая, так же как и для кристаллических веществ, в конечном счете определяется теми же квантовыми законами. Заметим, что структуру аморфных веществ уже более сорока лет успешно изучают рентгено- и электронографическими, а также нейтронографическими дифракционными методами. В отличие от кристаллических веществ, для которых характерна трехмерная периодичность и симметричность строения, аморфные вещества имеют непериодическую структуру, не подчиняющуюся законам симметрии. [c.160]

    Идеальное разграничение сфер влияния направленных и ненаправленных составляющих связи наблюдается в структуре соединений включения. Например, окись графита и монтмориллонит образуют соединения включения с аминами, диаминами и спиртами. Подобные соединения представляют собой систему слоев, между которыми размещаются молекулы — гости, связанные с этими слоями ван-дер-ваальсовскими межмолекулярными связями. Внутри слоев действуют межатомные связи. Тип структуры данных соединений определяется двухмерной системой межатомных связей, а расстояния между слоями — размером и числом молекул — гостей. Здесь на передний план выступает химическое строение твердого вещества. Это еще более заметно в случае канальных [c.162]

    У ионных кристаллов (рис. 1.9, 6 решетка построена из чередующихся ионов с противоположными зарядами, связь между которыми осуществляется за счет сил электростатического взаимодействия — кулоновских сил. Хотя энергия связи в решетке этого типа такая же, что и у атомного [составляет (8 — 12) X X 10 кДж/моль], прочность тел с этой структурой значительно ниже, так как в них связь рассеянная , ненаправленная. Поэтому, представители кристаллов такого типа хотя и обладают большой прочностью, высокой температурой плавления, малой летучестью, низкими тепло- и электропроводностями, но хорошо растворяются в полярных растворителях. Таковы неорганические соли и большинство минералов. [c.37]


    Вследствие ненаправленности и не.-насыщаемости ионной связи энергетически наиболее выгодно, когда каждый ион окружен максимальным числом ионов противоположного знака. Однако из-за отталкивания одноименных ионов друг от друга устойчивость системы достигается лишь при определенной взаимной координации ионов. [c.103]

    Электростатические силы тем больше, чем выше заряд ионов и чем меньше ионные радиусы. Поле кулоновских сил имеет сферическую симметрию, что приводит к ненаправленно-сти ионной связи. Можно выделить три особенности строения ионных соединений. [c.347]

    Прочность связей Ме—О значительно ниже, чем 81—О, и, кроме того, связи эти ненаправленные. Они носят преимущественно ионный характер, и следовательно, заряд катиона металла компенсируется всеми близлежащими кислородами. В среднем число кислородов, окружающих катион металла, соответствует его координационному числу. Протяженной структурной сетки такие катионы ие образуют и называются модификаторами в отличие от стеклообразователей, формирующих структурную сетку с направленными связями. [c.202]

    Также различают связи направленные и ненаправленные. Направленные химические связи — такие связи, энергия которых сильно зависит от расположения данной связи относительно других связей вокруг выбранного атома. [c.114]

    Ненаправленными связями считаются те, которые мало чувствительны к взаимной ориентации связей атома. [c.115]

    Характерные признаки ионной связи — ненаправленность и не-насыщаемость — определяют способность молекул понных соедн-Г1еннй к агрегации. [c.51]

    Ван-дер-ваальсовская связь, как связь ненаправленная, сходна в этом отношен11и с металлической. Поэтому точечный дефект молекулярного кристалла (пропущенная молекула) сходен с аналогичным дефектом металлического кристалла. Однако здесь возможны дефекты, связанные с неправильным положением крупных молекул весьма сложной формы. На рис. 260, а показана полностью упо- [c.257]

    С точки зрения описанных представлений для кристаллов с преимущественно ионным типом связи полиморфизм должен быть менее характерен, чем для кристаллов с преимущественно ковалентной связью. Ненаправленная и ненасыщаемая ионная связь, при которой каждый ион стремится окружить себя максимально возможным числом ионов другого знака, позволяет равномерно для всех связей аккумулировать значительное количество тепловой энергии, в то время как жесткие направленные ковалентные свя- [c.48]

    Под структурой металла понимают расположение ядер в решетке. Поскольку сила сцепления (металлическая связь) ненаправленная, то наблюдаемые структуры, за очень нeбoльцJи.м исключением, такие, которые ожидались на основе простых геометрических соображений для плотно упакованных одинаковых шаров, а именно  [c.123]

    Дальше мы будем обозначать бикурсальную связь ненаправленным отрезком. [c.463]

    Ненаправленность и ненасыщаемость ионной связи. Электрические заряды ионов обусловливают ИХ притяжение и отталкивание и в целом определяют стез иометрический состав соединения. Ионы можно представить как заряженные шары, силовые поля которых равномерно распределяются во всех направлениях в пространстве. Поэтому каждый ион может притягивать к себе ионы противоположного знака в любом направлении. Иначе говоря, нонная связь в отличие от ковалентной характеризуется ненаправленностью. [c.87]

    Вследствие ненасыщаемости и ненаправленности ионной связи строе ine ионных кристаллов опре-делябтся соотношением размеров ионоь (см. рис. 57). [c.101]

    С другой стороны, именно ненаправленность электро(1ной связи придает металлам присущую им пластичность, т. е. способность изменять под различными механическими воздействиями свою форму, не нарушая целости тела. [c.138]

    Важнейшей особенностью ионной связи является ее ненасыщае-мость и ненаправленность. Поле, создаваемое ионом, имеет сферическую симметрию, и все находящиеся в этом поле другие ионы ис- [c.129]

    Кристаллическую решетку ионного соединения можно рассматривать как бесконечное повторение минимального трехмерного участка (параллелепипеда), называемого элементарной ячейкой. В соответствии с симметрией элементарной ячейки кристаллическую решетку относят к одной из кристаллических систем (сингоний) кубической, тетрагональной, гексагональной, тригональной, орторомбической, моноклинной и триклинной (в порядке убывания симметрии). Нена-сыщаемость и ненаправленность ионной связи приводят в большинстве ионных кристаллов к образованию структур так называемых плотнейших упаковок. Это кубические решетки типов Na I и s l (рис. 60), сфалерита (ZnS) и флюорита (СаРг), гексагональные типа ZnO и др. [c.129]

    Взаимодействие друг с другом двух ионов с противоположным зарядом не может привести к взаимной компенсации их силовых полей (рис. 59). Поэтому у них сохраняется способность притягивать ионы противоположного знака и по другим направлениям. Следовательно, в отличие от ковалентной ионная связь опять же характеризуется ненасыщаемостью. Вследствие ненаправленности и ненасыщаемости ионной связи энергетически наиболее выгодно, когда каждый ион окружен максимальным числом ионов противоположного знака, т. е. когда достигается плотнейшая упаковка ионов. [c.96]

    В процессе отвердевания молекулы некоторых веществ, помимо ненаправленных ван-дер-ваальсовых связей, могут соединяться также более прочными водородными связями, которые обладают определенной направленностью в пространстве и являются связями промежуточного типа между межмолекулярными и межатомными связями. Это приводит при формировании твердого соединения к тому, что молекулы в зависимости от количества водородных связей, приходящихся на одну молекулу, соединяются в [c.107]

    Как известно, из двух главных структурообразующих факторов (ненаправленные силы межмолекулярного взаимодействия, отличающиеся дальнодействием, и направленные короткодействующие межатомные связи) первый представляет собой кристаллообразующее начало, обусловливающее плотную укладку структурных единиц в симметричные периодические структуры, отвечающие минимуму свободной энергии второй ответствен за строение самих структурных единиц, а для твердых атомных соединений — и за порядок их соединения в структуре соответствующих твердых веществ, например полимеров. Подчеркнем, что речь должна идти именно о порядке сборки структурных единиц, что беспорядочное строение аморфных веществ — не фатальная необходимость, а лишь следствие того, что природа не позаботилась вложить во все процессы отвердевания механизмы, примиряющие конкуренцию различных структурообразующих факторов. Но мы знаем, что существуют и такие процессы, в которых действие различных структурообразующих факторов определенным образом направлено в сторону образования регулярных, хотя часто и непериодических структур. Это процессы биологического синтеза. Известно, что в таких процессах действует программирующее устройство — матрица, по структуре которой строятся сложнейшие полимеры, и притом, как правило, с совершенной воспроизводимостью. [c.158]

    При образовании молекулярных кристаллов в условиях низких температур, исключающих межатомные взаимодействия, процесс отвердевания наблюдается в чистом виде. Молекулы без сколько-нибудь существенных изменений входят в кристаллическую структуру, связанные между собой только слабыми ненаправленными межмолекулярными связями. Именно поэтому молекулярные кристаллы имеют настолько плотную упаковку, насколько позволяет конфигурация молекул. Заметим, что с химической точки зрения и этот, казалось бы, чисто физический процесс цред-ставляет собой процесс синтеза, так как его продуктом является твердое молекулярное соединение — новое вещество, образующееся из молекул исходных веществ. Чисто межмолекулярные взаимодействия представляет собой кристаллизация неона, аргона, криптона, ксенона и радона. Хотя их кристаллы состоят из атомов, тем не менее это настоящие молекулярные кристаллы образующие их молекулы одноатомны. Понятно, что между такими молекулами не может быть никакого другого взаимодействия, кроме ван-дер-ваальсовского.  [c.21]

    Молекулы некоторых веществ, помимо ненаправленных ван-дер-ваальсовских связей, могут соединяться также водородными связями, которые обладают определенной направленностьто в пространстве и являются связями промел уточного типа между межмолекулярными и межатомными связями. Это приводит к очень существенному осложнению процесса отвердевания молекулы соединяются в зависимости от количества водородных связей, приходящихся на одну молекулу, в цепи, сетки или пространственные каркасы, что исключает плотнейшую упаковку молекул, но не кристаллизацию вещества. Получаются более рыхлые структуры, чем при кристаллизации под действием только ненаправленных связей. Если при этом присутствуют подходящие по величине посторонние молекулы, то они включаются в структуру, размещаясь между цепями, сетками или в полостях каркаса, и образуются соединения включения (см. ниже), которые имеют довольно высокую плотность. [c.21]

    Ненаправленность ван-дер-ваальсовских связей, действующих между молекулами — структурными единицами в молекулярных кристаллах,— во всех случаях позволяет молекулам располагаться плотнейшим образом. Как заметил А. И. Китайгородский, выступы одной молекулы так точно попадают во впадины соседних молекул, что между ними остаются лишь самые небольшие зазоры (рис. 2). Координационные числа для многих молекулярных кристаллов равны 12, координационное число гексаме-тилентетрамина К4(СН2)б И, координационное число молекулярных кристаллов мочевины 10. Структура молекулярных кристаллов устойчива в тех случаях, когда молекулы не накладываются друг на друга, но имеют максимальное количество точек соприкосновения. [c.22]

    Соединения включения образуются двумя или несколькими разными веществами, когда молекулы одних веществ играют роль хозяина , а других — роль гостей . Последние размещаются между молекулами или макромолекулами вещества-хозяина в полостях, между слоями, или в каналах структуры. Такая структура возникает в процессе образования соединения включения путем связывания молекул вещества-хозяина нодородными связями или уже существует в готовом виде, например в полимерах. Молекулы-гости располагаются в полостях вещества-хозяина не свободнее, но и не теснее, чем позволяют ван-дер-ваальсовские радиусы. Они попадают в окружение такого большого числа молекул основного вещества-хозяина, что энергия их связи достигает сравнительно большой величины, а именно 5—10 ккал/моль, повышаясь в отдельных случаях до 20 ккал/моль. Сосредоточение ван-дер-ваальсовских и водородных связей в структуре твердого вещества, повышение их роли до роли основного структурообразующего фактора— явление очень распространенное в области твердых веществ, многие из которых представляют собой молекулярные соединения— аддукты того или иного вида. Заметим, что соединений включения не образуют ни ионные соединения, в частности соли, ни металлы, в структуре которых преобладают ненаправленные связи. [c.24]

    Обратим внимание на то, что кристаллообразующий фактор (т. е. ненаправленные связи) при прочих равных условиях берет верх в тех процессах отвердевания, в которых соединяются нульмерные структурные единицы, как, например, при кристаллизации аргона или при образовании выщеуказанных глобулярных кристаллов вирусами. Наряду с мерностью структурных единиц большое значение имеет также такой структурообразующий фактор, как величина энергии межатомной связи. Только при условии малой величины межатомной связи и нульмерности структурных единиц осуществляется чистый фазовый переход — кристаллизация, не осложненная химическими процессами отвердевания, типа полимеризации, поликонденсации или др. [c.159]

    Еще раз подчеркнем, что во всех структурах без исключения определяющее значение принадлежит ковалентной составляющей межатомной связи, которая задает тип структуры. Роль ненаправленных связей сводится лишь к соединению структурных единиц. Последние только в островных структурах имеют вид кирпичей или блоков. В цепочечных и слоистых структурах они похол и скорее на балки и стеновые панели, а в каркасных — на превосходно сконструированные коробки зданий. [c.162]

    Ненаправленность и ненасыщаемость ионной связи. Электрические заряды ионов обусловливают их притяжение и отталкивание к в целом определяют стехнометрический состав соединения. Ионы можно представить как заряженные шары, силовые поля которых равномерно распределяются во всех направлениях в пространстве. [c.103]

    Так, структура жидкого бензола определяется в основном дисперсионным взаимодействием неполярных молекул и при введении в бензол другого вещества с неполярными молекулами, например гексана, характер взаимодействия между молекулами не меняется. Структуру возникающего раствора, как и индивидуальных жидкостей, обусловливают те же ненаправленные и ненасыщаемые дисперсионные силы. Следствие этого — хорошая растворимость гексана в бензоле и бензола в гексане. Если же внести бензол в воду, то происходит разрыв водородных связей и нарушение структуры жидкой воды без образования более прочных новых связей. Отсюда ясна причина плохой растворимости бензола в воде. [c.160]

    Главными свойствами ионной связи являются ненасыща-емость и ненаправленность. [c.59]

    Металлическая связь ненасыщена и ненаправлена. Первое следует уже из того, что она объединяет очень большое число атомов и при дальнейшем их увеличении главный ее признак — делокализация электронов — не исчезает, а усиливается. Ненаправленность метгиплической связи обусловлена сферической симметрией облаков 8-электронов перекрьшание, например, трех и более сфер зависит только от расстояний между ними и не зависит от направлений, по которым они сближаются. В этом причина того, что многие металлы могут менять свою форму (ковкость) без потери прочности. [c.151]

    К соединениям с ионной связью, образующим ионные решетки, относится большинство солей и небольшое число оксидов. По прочности ионные решетки уступают атомным, но превышают молекулярные. Ионные соединения имеют сравнительно высокие температуры плавления летучесть их в большинстве случаев невелика. Они обладают хрупкостью и являются диэлектриками. В связи с тем, что ионная связь ненасыщенна и ненаправленна, ионная решетка характеризуется высокими координационными числами (6, 8). [c.161]


Смотреть страницы где упоминается термин Связи ненаправленность: [c.129]    [c.127]    [c.18]    [c.75]    [c.135]    [c.199]    [c.129]   
Теоретические основы общей химии (1978) -- [ c.74 ]




ПОИСК







© 2025 chem21.info Реклама на сайте