Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Обмен между

    Рассматривая аморфное тело как переохлажденную жидкость, оцепеневшую из-за очень больщой вязкости, следует помнить, что в отличие от жидкостей в аморфном веществе обмен между соседними частицами практически не происходит. Большая вязкость расплавов затрудняет движение и переориентировку молекул, что препятствует образованию зародышей твердой фазы. Поэтому прн быстром охлаждении жидкостей (расплавов) оии затвердевают не в кристаллическом, а в аморфном состоянии. [c.159]


    Кроме рассмотренных, известны и другие модели структуры потоков, предложенные для специальных случаев. Так, применительно к псевдоожиженному слою разработана и исследована [68] двухфазная модель с поршневым течением фаз и обменом между ними. Для реакторов с неподвижным слоем катализатора предложена [69, 70] модель структуры потока, по которой неподвижный слой представляет собой ряд параллельных диффузионных каналов с различной степенью перемешивания и с примыкаю- [c.30]

    Ширина линий в спектре может по ряду причин различаться. Мы упоминали ранее, что спиновая плотность на протонах группы СН эти-ламина зависит от конформации. Временная зависимость этого типа процесса может повлиять на ширину линий различных протонов в молекуле различным образом. Быстрый обмен между различными конфигурациями ионной пары с анион- или катион-радикалом также может привести к большему уширению одних линий но сравнению с другими [256, 26]. [c.49]

    В то время как во всех предыдущих случаях довольно ясно, что реакция окисления — восстановления происходит путем переноса атома или иона между частицами, имеются случаи, в которых реакция протекает очень быстро без каких-либо изменений в оболочках растворителя вокруг восстановленных или окисленных частиц. Так, Ре(СМ)5 и Ре(СК),[ быстро обменивают меченый Ре, хотя никакого обмена N в заметной степени не происходит [105]. То же самое происходит при обмене между MnO II МпО " [106, 107] и между Оз (Ь1р)з" и Оз (Ь1р)з", где Ь1р — дипиридил [108]. Хотя и были попытки рассматривать некоторые из этих реакций как [c.506]

    Было показано [116], что подобный обмен между 8п и Зи в 10 М [c.508]

    Расчеты показывают, что обмен молекулами между жидкостью и ее насыщенным паром происходит исключительно интенсивно на каждом квадратном сантиметре поверхности ежесекундно концентрируется около 8,5-10 молекул. Если учесть, что на аналогичной площади воды даже при самой плотной упаковке не может разместиться более 101 молекул, то из этого следует, что длительность пребывания одной молекулы на поверхности не превышает 1,25-10- с. Такой стремительный обмен молекулами между жидкостью и паром должен сопровождаться подобным же обменом между объемом жидкости и ее поверхностным слоем. А это означает, что в поверхностном слое движение молекул чрезвычайно интенсивно. [c.187]

    Законы сохранения массы и импульса дисперсной смеси записываются для физически малого объема отдельно для каждой фазы. В отличие от случая однофазного потока в уравнения должны быть включены члены, учитывающие обмен массой и импульсом не только с внешней (по отношению к вьщеленному объему) средой, но и соответствующий обмен между фазами внутри вьщеленного объема. [c.59]


    По всей высоте колонны происходит обмен между фазами и полезное перемещение менее адсорбируемых компонентов (обычно это более низкокипящие углеводороды) в верх колонны, а более адсорбируемых компонентов вниз колонны. Уголь после регенерации в низу колонны возвращается наверх. При необходимости в промежуточных точках по высоте колонны могут отбираться промежуточные фракции. В качестве примера в табл. V- приведены данные по сепарации этилена на полупромышленной установке. [c.267]

    По мере того как углеводороды направляются к низу колонны, а насыщенный раствор движется вверх, по всей высоте колонны происходит обмен между молекулами Л и Б в двух фазах. В результате этого обмена и движения фаз происходит полезное перемещение более растворимого компонента А в верхнюю часть колонны, а менее растворимого компонента В — в нижнюю часть. В итоге, если компонент А частично смешивается с растворителем при температуре процесса и колонна содержит достаточное число фракционирующих ступеней, этот компонент можно получить достаточно чистым вверху колонны. Описанный выше процесс соответствует однократной дистилляции с полным орошением фаза растворителя и фаза рафината соответственно аналогичны паровой и жидкой фазам дистилляции. [c.280]

    Авторы работы [199] отмечают сложный циркуляционный характер движения жидкости в барботажных колоннах. Скорость ее в сечении колонны меняется, причем центр восходящего потока может менять положение, блуждая в поперечном сечении. На крупномасштабную циркуляцию (размер высоты слоя) накладываются вихри меньшего масштаба (порядка диаметра аппарата), что приводит к радиальному обмену между областями с различными скоростями. Сочетание поперечных неравномерностей и обмена определяет влияние размера аппарата на интенсивность продольного перемешивания. [c.200]

    Анионный обмен между твердой и жидкой фазами [c.41]

    Равновесие обмена анионов между ониевыми хлоридами, растворенными в 1,2-дихлорэтане, и твердым п-нитрофенолятом натрия устанавливалось за 10—30 мин, т. е. медленнее, чем при обмене между жидкими фазами. По скорости обмена (X ОФ замещается нитрофенолятом) катионы и анионы растворенными в 1,2-дихлорэтане, и твердым и-нитрофенолятом полагаются в следующий ряд [20]  [c.43]

    Формирование равновесных краевых углов требует в ряде случаев значительного времени в связи с замедленным массо-обменом между объемной жидкостью и тонкими смачивающими пленками. Кинетика перехода к состоянию равновесия контролируется при этом вязким сопротивлением пленок и диффузией компонентов водного раствора, равновесная концентрация которых в объемной фазе и тонкой пленке может быть различной. Вследствие этого вначале может быстро устанавливаться механическое равновесие в объеме капли или мениска при отсутствии механического и термодинамического равновесия с жидкостью в пленке. Возможность реализации ряда состоя- [c.220]

    Почти все авторы цитированных выше работ высказывают определенные сомнения относительно правомерности использованных ими в расчетах средне логарифмических значений движущей силы, т. е. постулата о движении ожижающего агента в режиме идеального вытеснения. Однако неплохое совпадение их данных подтверждает мое мнение о приемлемости этого постулата. Это не значит, что режим потока действительно стержневой обмен между непрерывной и дискретной фазами происходит, возмо рно, настолько быстро, что никакого отклонения от стержневого режима практически обнаружить невозможно. [c.389]

    Если сопротивление обмену между непрерывной и дискретной фазами равно сопротивлению в непрерывной фазе на границе твердая частица — ожижающий агент или превышает его (6 1), то слой может рассматриваться как однородный. В наибольшей мере это справедливо при а -> 1 и высоком р, но и для а = 0,1 и р = 0,1 слой еще достаточно близок к однородному. [c.396]

    Сопоставлением радиоактивности серы в газе и в катализаторе после введения меченого сероуглерода показано, что до 10,6% серы в катализаторе после удаления избыточной серы было радиоактивным, т. е. произошел обмен между серой сырья и серой катализатора. [c.269]

    Доказательство. Пусть количество теплообменников будет I, а горячим и холодным потоками, входящими в -Д теплообменник, будут соответственно и 8ц-1 ( , /=1,1). Если каждый из 5м-< и SJv-j ( , = 1,1) рассматривается как отдельный поток, то в данном случае все условия задачи VI- будут выполняться. Поэтому из теоремы VI- вытекает, что горячие и холодные потоки будут взаимодействовать попарно в порядке понижения их температур. Многократный обмен между одним горячим и одним холодным потоком возможен только при противоточной структуре теплообмена. [c.240]

    Второй путь состоит в следующем [3]. Уравнения баланса массы и энергии записываются не для смеси фаз (как это делалось в модели взаимопроникающих континуумов), а для каждой фазы отдельно. Обмен между фазами учитывается в виде соответствующих условий на границе раздела фаз. Динамические свойства системы учитываются косвенными характеристиками функциями распределения фаз по времени пребывания в аппарате и функциями распределения включений дисперсной фазы по размерам. Эти характеристики являются решениями уравнений БСА (см. 1.5), которые формулируются для частиц сплошной и дисперсной фаз и отражают стохастические свойства системы. Рассмотрим эту конструкцию более детально. [c.136]


    В случае, когда обмен между проточными и застойными зонами системы носит конвективный и диффузионный характер, результирующий обменный поток выражается соотношением (см. 7.1) [c.221]

    Н х, t) S — переменный объем п-й ячейки потока газа /сг, i, / 2 — коэффициенты обмена замкнутой цепи обменных процессов между ячейками. Частные случаи модели (7.140) не раз встречались в литературе. Так, если пренебречь распределенностью гидродинамических параметров по длине аппарата и во времени, а также обменом между проточными и застойными зонами в жидкости, то система уравнений (7.140) примет вид, который исследовался в работе [49]  [c.418]

    Каталитический обмен между дейтерием и аммиаком идет по у])авнению реакции [c.424]

    Для соотношения (1) обмен ближайших к иону молекул воды происходит реже, чем обмен между молекулами в чистой воде ( > Е). [c.343]

    При установившемся равновесии обменного процесса поверхность ионита и раствор приобретают электрические заряды противоположного знака, на границе раздела ионит — раствор возникает двойной электрический слой, которому соответствует скачок потенциала. Поскольку иониты обладают повышенной избирательной способностью по отношению к определенному виду ионов, находящихся в растворе, ионообменные электроды называются также ионоселективными. Стеклянный электрод является важнейшим среди этой группы электродов. Он представляет собой тонкую мембрану из специального стекла, в котором повышено содержание щелочных составляющих — соединений натрия, лития и др. Согласно теории Б. П. Никольского потенциалопределяющий процесс на границе раствор — стекло заключается в обмене между ионами щелочного металла, например Ма+, содержащимися в стекле, и ионами Н+, находящимися в растворе  [c.484]

    Заряженными частицами, принимающими участие в обмене между фазами, могут быть положительные и отрицательные ионы, а также электроны. Какие именно частицы переходят из одной фазы в другую и тем самым обусл(Звливают возникновение скачка потенциала, определяется природой граничащих фаз. На границах металл — вакуум или металл 1 — металл 2 такими частицами являются обычно электроны. При создании границы металл — раствор солн металла в обмене участвуют катионы металла (см., однако, ниже). Скачок потенциала на границе стекло — раствор, а также ионообменная смола — раствор по5 вляется в результате обмена, в котором участвуют два вида одноименно заряженных ионов. На границах стекло — раствор и катионнг—раствор такими нонами являются ноны щелочного металла и водорода иа границе анионит— раствор это ион гидроксила н какой-либо другой анион. Прн контакте двух несмешивающихся жидкостей, каждая из которых содержит в растворенном виде один и тот же электролит, потенциал возникает за счет неэквивалентного перехода обоих ионов электролита из одной фазы в другую. [c.28]

    Уравнение (14.7) очень просто объяснить. Действительно, если реакция (XVII) мгновенна, обмен между молекулами НаЗ и Н5 не создает совсем никакого сопротивления и скорость диф  [c.158]

    Метод ионного обмена. Обмен между ионами, находящимися в растворе, и ионами, присутствующими на поверхности ионита, исиользуют для извлечения из сточных вод и утилизации ценных иримесей (соединений мышьяка, фосфора, а также хрома, цинка, свинца, меди, ртути) и радиоактивных веществ. Сточную воду можно очистить до предельно допустимых концентраций вредных веи еств и использовать в технологических процессах пли в системах оборотного обеспечения. [c.98]

    Примером таких реакций может служить изотопный обмен между двумя ионами, находящимися в различном валентном состоянии такие взаимодействия не приводят к осуществлению какого-либо химического превращения. Очень тщательно была изучена система Ге " — Ге " в водном растворе. Реакция обычно проводится в присутствии НСЮ4, добавляемой для поддержания постоянной ионной силы и постоянного pH и предотвращения образования комплексов [96, 97]. Обмен идет довольно быстро, и, [c.504]

    Изотопный обмен между соединениями имеет большое значение при изучении механизма реакций. Для реакций обмена изотопов водорода оказались эффективными такие катализаторы, как Ni, Fe, Pt и различные окислы, включая ZnO, SiO —Al Qa и fgOj. Некоторые из этих соединений служат также катализаторами для изотопного обмена кислорода и азота. [c.314]

    Когда адсорбент приходит в соприкосновение с жидким (или газовым) раствором двух или более компонентов, некоторые молекулы оказываются прикрепленными к его поверхности. Эти молекулы некрепко связаны и происходит непрерывный обмен между молекулами в поверхностном слое и молекулами в глубине раствора. Разные молекулы отличаются силой своей связи с поверхностью и, когда устанавливается равновесие, состав вещества поверхностного слоя будет отличаться от состава окружающего раствора. Вещество в поверхностном слое относят к адсорбционной фазе, так как оно отличается от вещества жидкой фазы. Так же как и в других двухфазных процессах разделения, существует различие в составе фаз, которое позволяет разделить компоненты смеси. Мэйр, Вестхавер и Россини [13] применили к анализу разделительной адсорбции понятия, общие для других двухфазных разделительных процессов, как например, фракционная дистилляция. Так же как и в случае дистилляции, понятие [c.259]

    По механизму 1 протекают реакции тиол-дисульфидного обмена в полисульфидах с концевыми меркаптанными группами, а по механизму 2 — обмен между полисульфидными связями с различной степенью полисульфидности в этих же полимерах [16, с. 488]. [c.160]

    Рассматриваемый вопрос полезно обсудить в количественном аспекте. С этой целью мы сравним высоты единицы переноса от дискретной к непрерывной фазе (BEHj) и от ожижающего агента к твердой частице (ВЕП) при высоких значениях UdN. Обмен между фазами рассмотрен в следующем разделе III (табл. IX-2 и IX-3), где показано [c.391]

    Параметр а представляет собой обратное число псевдоожижения. Параметр р является м рой влияния продольного перемешивания газа в непрерывной фазе на процесс переноса. Параметр 7 — обратное число единиц переноса, достигаемое в однородном псевдоожиженном слое. Так как сопротивление переносу обратно пропорцпонально коэффициенту переноса, то параметр б выражает отношение сопротивлений обмену между непрерывной и дискретной фазами. [c.396]

    При формулировке метода определения параметров модели будем считать, что располагаем неадсорбируюпщмся индикатором, так что обмен между проточной и застойной частями системы происходит в основном за счет конвекции и диффузии ( 1= 2=А). Неизвестными параметрами модели при этом будут являться число ячеек п, объем проточной части Уг, объем застойной зоны константа скорости обмена к. Применение в качестве индикатора радиоактивных изотопов позволяет измерить на выходе из аппарата две функции распределения одну в проточной зоне и вторую — по средней концентрации в полном сечении аппарата. Для каждой из этих кривых можно найти первый начальный и второй центральный моменты распределения. Тогда для определения неизвестных параметров модели следует воспользоваться уравнениями (7.85) и (7.91), где надо положить к =к =к, а также уравнениями (7.94) и (7.95). Решая совместно эти уравнения, получим [c.387]

    Под сольватацией понимают совокупность энергетических и структурных изменений, происходящих в растворе при взаимодействии частиц растворенного вещества с молекулами растворителя. Обычно рассматривают два вида такого взаимодействия взаимодействие за счет короткодействующих сил (близкодействие) и за счет дальнодей-ствующих сил (дальнодействие). Близкодействие относят к сильному взаимодействию, дальнодействие —к слабому. В связи с этим принято считать, что вокруг частицы растворенного вещества расположены две сольватные оболочки — первичная и вторичная. В первичную сольватную оболочку входят молекулы растворителя, находящиеся в непосредственной близости от частицы растворенного вещества и совершающие движение в растворе вместе с ней. Число молекул растворителя в первичной сольватной оболочке называется координационным числом сольватации данной частицы, значение которого зависит от природы растворенного вещества и растворителя. Во вторичную сольватную оболочку входят молекулы растворителя, находящиеся от частицы растворенного вещества на больших расстояниях. Молекулы растворителя вторичной сольватной оболочки влияют на протекающие в растворе процессы за счет взаимодействия их с первично сольватированной частицей. Сольватация частиц растворенного вещества оказывает влияние как на тепловое движение молекул растворителя, так и на обмен между частицами растворителя, находящимися вблизи частиц растворенного вещества, и частицами растворителя более удаленными. Сольватация очень сильно проявляется в водных растворах гидратация) и особенно в водных растворах электролитов благодаря взаимодействию заряженных ионов с поляр- [c.342]

    Под Г(фметичностью понимают способность оболочки (корпуса) обс1рудовання, отдельных ее элементов, их соединений препятствзвать жидкостному или газовому обмену между средами, разделенными этой оболочкой. [c.285]


Смотреть страницы где упоминается термин Обмен между: [c.57]    [c.420]    [c.509]    [c.577]    [c.193]    [c.399]    [c.74]    [c.40]    [c.256]    [c.418]    [c.424]    [c.303]   
Смотреть главы в:

Химия актинидных элементов -> Обмен между




ПОИСК







© 2025 chem21.info Реклама на сайте