Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тантал натрием и серебром

    Определению молибдена роданидным методом не мешают ионы алюминия, кобальта, урана, тантала, натрия, калия, кремния, кальция, магния, титана, ванадия, хрома, марганца, никеля, цинка, мышьяка, серебра, олова, сурьмы и ртути. Соединения железа (III) и меди усиливают интенсивность окраски, вероятно, вследствие образования много-ядерных комплексов, содержащих молибден, железо (или медь) и роданид. Мешающее влияние вольфрама устраняют введением винной кислоты, препятствующей образованию роданидных комплексов вольфрама. [c.379]


    Электроны из атомов цезия выбиваются квантами, обладающими меньшей энергией, чем из калия и натрия. Порог фотоэффекта для натрия и лития лежит в области видимой части спектра. Тантал, серебро, никель, платина не обнаруживают фотоэффекта при освещении их лучами видимой части спектра. Их красная граница лежит в ультрафиолетовой области, так как кванты видимой части спектра обладают энергией, недостаточной для освобождения электронов из этих металлов. Поэтому для изготовления большинства вакуумных фотоэлементов употребляют чаще всего щелочные металлы. [c.43]

    Платина Никель Серебро Тантал Литий Натрий Калий Цезий [c.77]

    Растворимость металлов в ртути весьма различна. Наибольшей растворимостью при комнатной температуре обладают таллий и индий (около 50%) растворимостью от 1 до 10% обладают цезий, рубидий, кадмий, цинк, свинец, висмут, олово, галлий от 0,1 до % — натрий, калий, магний, кальций, стронций, барий от 0,01 до 0,1% — литий, серебро, золото, торий от 0,01 до 0,001% — медь, алюминий и марганец. Практически нерастворимы в ртути металлы семейства железа, а также бериллий, германий, титан, цирконий, мышьяк, сурьма, ванадий, тантал, хром, молибден, вольфрам и уран. Для некоторых металлов растворимость в ртути сильно увеличивается с увеличением температуры. Известны амальгамы нерастворимых в ртути металлов эти системы представляют собой коллоидные растворы или взвеси в ртути. В таких амальгамах можно, например, довести содержание железа до [c.306]

    Серебро и тантал инертны к воздействию растворов хлорида натрия независимо от температуры и концентрации [25]. Но ввиду высокой стоимости эти материалы могут быть рекомендованы в качестве конструкционного материала для изготовления аппаратуры лишь там, где недопустимо загрязнение производственных сред продуктами коррозии. [c.32]

    Действие тантала в процессе электролиза можно сравнить с действием хрома и ванадия. Действие же титана проявляется при концентрации 5 мг/дм , но менее сильно, чем действие 1 мг/дм ванадия. При изучении кинетики разложения амальгамы натрия установлено, что на процесс электролиза не влияют соли кобальта, рутения, палладия —при концентрации 1 мг/дм , соли серебра, алюминия, лантана, титана, висмута, железа, никеля —при концентрации 10 мг/дм соли меди, магния, кадмия, марганца, сурьмы, вольфрама — при концентрации 100 мг/дмЗ не заметно действие солей бериллия, кальция, -стронция, бария, цинка, циркония, олова, бора — при концентрации 1000 мг/дм . [c.229]

    Мышьяк Натрий, Никель. Олово. Палладий Платина Радий Ртуть. Свинец Селен. Сера. Серебро Стронций Сурьма Титан. Тантал Теллур Углерод Фосфор Фтор. Хлор. Хром. Цинк.  [c.196]


    Электролизом водных растворов в настоящее время получают фтор, хлор, водород, хром, марганец, щелочи, хлораты, перхлораты, перманганаты, перекисные соединения (перекись водорода, персульфаты) и др. Он находит применение и для очистки (рафинирования) некоторых металлов, например цинка, меди, свинца, серебра, золота и других малоактивных металлов. При получении активных металлов (лития, натрия, калия и т. п.) и металлов, на которых перенапряжение водорода имеет небольшое значение (тантал. бериллий и т. п.), применяют электролиз расплавов (см. часть VHI 8). Особенности его — высокие температуры электролита, доходящие иногда до 1000° С, и повышенный расход электроэнергии как на поддержание электролита в расплавленном состоянии, так и на устранение различных вторичных процессов на электродах. [c.139]

    Электролизом водных растворов в настоящее время получают фтор, хлор, водород, хром, марганец, щелочи, хлораты, перхлораты, перманганаты, пероксидные соединения (пероксид водорода, персульфаты) и др. Он находит применение и для очистки (рафинирования) некоторых металлов, например цинка, меди, свинца, серебра, золота и других малоактивных металлов. При получении активных металлов (лития, натрия, калия и т. п.) и металлов, на которых перенапряжение водорода имеет небольшое значение (тантал, бериллий и т. п.), применяют электролиз расплавов (см. главу Vni). Особенности его — высокие температуры электролита, доходящие иногда до 1000°С, и повышенный расход электроэнергии как на поддержание электролита в расплавленном состоянии, так и на устранение различных вторичных процессов на электродах. Заводы с электрохимическими производствами потребляют большие количества электрической энергии, поэтому выгодно располагать их вблизи крупных гидроэлектростанций, вырабатывающих дешевую энергию. [c.124]

    Отметим, что многие элементы, взятые сами по себе в концентрациях, значительно превышающих их возможную концентрацию в электролите, не оказывают каталитического действия на разряд водорода в электролизере. Так, в соответствии с данными о кинетике разложения амальгамы натрия в состоянии покоя, в течение 30 мин [241] незаметно действие солей бериллия, кальция, стронция, бария, цинка, иттрия, церия, празеодима, неодима, самария, европия, эрбия, циркония, олова, бора, тантала и теллура, добавленных в концентрации 1000 мг/л. Соли меди, магния, кадмия, галлия, таллия, тория, марганца, сурьмы и вольфрама не оказывают влияния при концентрации 100 мг/л, соли серебра, алюминия, лантана, титана, висмута, железа, никеля — при концентрации 10 мг/л соли урана, кобальта, рутения, палладия—при концентрации 1 мг/л, а соли молибдена, рения, осмия, родия не оказывают влияния при концентрации 0,1 мг/л. Действие германия не обнаруживается при концентрации 0,01 мг/л, в то время как влияние солей ванадия, хрома и платины при этой же концентрации заметно. [c.39]

    Платина Никель Серебро Тантал Литий Натрий Калий Цезий 1962 2463 2610 3050 5260 6800 10000 14000 [c.74]

    К ислород, Кобальт. . Магний. . Марганец. Медь. . . Молибден. Мышьяк. . Натрий. . Никель. . Олово. . . Р. 3. э. (по Свинец. . Серебро. . Сурьма. . Таллий. . Тантал. . Титан. . . Углерод. . Фосфор. . Фтор. . . Хлор. . . X ром. . . Цинк, . .  [c.17]

    Обычно на практике классифицируют металлы, исходя из общих сырьевых, технологических и потребительских признаков. Принято разделение металлов на черные и цветные. К черным металлам относятся железо и его сплавы, а также металлы, применяемые главным образом в сплавах с железом—хром, марганец. К ц в е т н ы м—относятся все остальные металлы, которые, в свою очередь, подразделяются на тяжелы е—медь, никель, свинец, олово, цинк л е г к ие—алюминий, магний, калий, натрий малы е—сурьма, ртуть, висмут, кадмий редкие—вольфрам, молибден, ванадий, кобальт, ниобий, тантал, титан, бериллий, литий и др. рассеянны е—германий, рений, индий, галлий и др. благородные—платина, палладий, иридий, осмий, рутений, золото и серебро. [c.113]

    Рассмотрим возможные причины сходства элементов. Сходство элемента с его соседями сверху и снизу есть внутригрупповое сходство элементов-аналогов оно обусловлено прежде всего близким строением самых внешних электронных оболочек. Наибольшее сходство и изоморфизм проявляют тяжелые аналоги с близким строением внешних электронных оболочек, например калий и рубидий, серебро и золото, кальций и стронций, цинк и кадмий, скандий и иттрий, иттрий и гадолиний-лютеций, цирконий и гафний, ниобий и тантал, железо и никель, кобальт и никель и т. д. Значительные же различия свойств элементов-аналогов в высших валентных состояниях, когда все электроны уходят с внешней оболочки, большей частью обусловлено несходством строения внешних оболочек ионов (литий и натрий, бериллий и магний, бор и алюминий, углерод и кремний и т. д.). [c.158]

    Исследовано коррозийное действие воды и воздуха на многочисленные сплавы урана. Более или менее подробно изучены системы из урана со следующими элементами натрий калий, медь, серебро, золото, бериллий, магний, цинк, кадмий, ртуть, алюминий, галлий, индий, церий, лантан, неодим, титан, германий, цирконий, олово, торий, ванадий, ниобий, тантал, висмут, хром, молибден, вольфрам, марганец, рений, железо, кобальт, никель, рутений, родий, палладий, осмий, иридий и платина. В большинстве случаев полная фазовая диаграмма еще не разработана. Недавно опубликованы описания систем уран—алюминий и уран—железо [11], уран—вольфрам и уран—тантал [12], уран—марганец и уран—медь [13]. g g [c.152]


    Алюминий Барий. Бериллий Висмут. Вольфрам Железо Золото. Кадмий. Кальций Калий. Кобальт Литий. Магний Марганец Медь. . Молибден Натрий. Никель. Олово. Палладий Платина Рубидий Свинец. Серебро Стронций Сурьма Тантал. Торий. Углерод Уран. . Хром. . Цезий. Цчнк. . Цирконий [c.355]

    Данные, полученные при исследовании простых соединений, не могут быть с уверенностью применены к анализу смесей. Так, например, титан, ниобий и тантал могут быть количественно осаждены гидролизом их солей из слабокислых растворов, но если присутствует цирконий, осаждение будет неполное, а может и вовсе не произойти. Точно так же, галлий совсем не осаждается сероводородом в слабокислом растворе, но в присутствии цинка, серебра, меди и мышьяка его осаждение может быть полным. Наконец, ])астворимость хлороплатината калия в 80%-ном спирте хорошо известна, но она совершенно отличается от его растворимости в 80 %-ном спиртовом растворе, содержащем хлоронлатинат натрия и свободную платинохлористоводородную кислоту, как это обычно имеет место в ходе анализа. [c.82]

    Цветные металлы делятся на 4 группы 1) тяжелые медь, свинец, олово, цинк и никель 2) легкие алюминий, магний, кальций, калий и натрий часто к этой группе относят также барий, бериллий, литий и другие щелочные и щелочноземельные металлы 3) драгоценные, или благородные платина, иридий, осмий, палладий, рутений, родий, золото и серебро 4) редкие а) тугоплавкие вольфрам, молибден, ванадий, тантал, титан, цирконий и ниобий, к ним же иногда относят кобальт б) легкие бериллий, литий, рубидий и др. в) рассеянные германий, галлий, таллий, индий и рений, к ним причисляют также селен и теллур, которые являются скорее металлоидами, чем металлами г) редкоземельные лантан, иттрий, гафний, церий, скандий и др. д) радиоактивные торий, радий, актиний, протактиний, полоний, уран и заурановые элементы. Из группы редких металлов часто выделяют в качестве отдельной группы так называемые малые мегаллы сурьму, ртуть, висмут. [c.431]

    Через шесть лет Е. Ленссен сгруппировал в триады уже не часть химических элементов, а все известные к тому времени химические элементы, которых тогда насчитывалось около 60. Ознакомившись с таблицей Е. Ленссена, Менделеев заметил, что в этой системе замечаются естественные группы, часто совпадающие с его, менделеевскими, общими понятиями (напр., группы калия, натрия и лития бария, стронция и кальция магния, цинка и кадмия серебра, свинца и ртути серы, селена и теллура фосфора, мышьяка и сурьмы осмия, платины и иридия палладия, рутения и родия вольфрама, ванадия и молибдена тантала, олова и титана и др.). Но тут же Менделеев замечает, что 1) кремний, бор и фтор, 2) кислород, азот и углерод, 3) хром, никкель и медь, 4) бериллий, цирконий и уран едва ли могут быть поставлены в одни группы, как это делает Ленссен. Система Ленссена, по мнению Менделеева, не решила проблемы, так как страдала шаткостью и не имела прочного начала. Ленссен старается,— пишет он,— опереться в триадном разделении элементов на их отношения по величине паев (в каждой триаде пай среднего элемента равен полусумме паев крайних элементов, как у Кремерса и др.), также [c.271]

    Алюминий (А1) Барий (Ва). . Берилий (Ве) Ванадий (V). Висмут (В1). Вольфрам ( ) Железо (Ре). Золото (Аи). Иридий (Лг). Кадмий (Сс1). Калий (К). . Кальций (Са) Кобальт (Со) Кремний (81). Литий (Ь1). . Магний (Mg) Марганец (Мп) Медь (Си). . Натрий (Ыа). Никель (N1). Молибден (Мо) Ниобий (Nb). Олово (Зп). Осмий (Оз). Палладий (Р(1) Платина (Р1) Ртуть (Hg). Рубидий (НЬ) Свинец (РЬ). Серебро (Ag) Стронций (8г) Сурьма (5Ь). Тантал (Та). Титан (Т1). . Торий (ТЬ). Хром (Сг). . Цезий (Сз). Цинк (2п). . Цирконий (Zr) Теллур (Те).  [c.186]

    Литий Лютеций Ьи Магний Ма Марганец Мп Медь Си Менделевий М(] Молибден Мо Мышьяк Аз Натрий N8 Неодим Л с1 Неон N0 Нептуний Л"р Никель N1 Ниобий Олово 8п Осмпй Оз Палладий Р(1 Платина Плутоний Ри Полоний Ро Празеодим Рг Прометий Рш Протактиний Ра Радий На Радон Нп Рений Ве Родий НЬ Ртуть Нд Рубидий ВЬ Рутений Ки Самарий 8ш Свинец РЬ Селен 8е Сера 8 Серебро А Скандий 8с Стронций 8г Сурьма 8Ь Таллий Т1 Тантал Та [c.393]

    Медь. . . Менделевий Молибден Мышьяк Натрий Неодим Неон. Нептуний Никель Ниобий Нобелий Олово. Осмий Палладий Платина Плутоний Полоний Празеодим Прометий Протактиний Радий. Радон. Рений. Родий. Ртуть. Рубидий Рутений ( амарий Свинец Селен Сера. Серебро Скандий Стронций Сурьма Таллий Тантал [c.13]

    Натрий. Неодим. Неон Нептуний Никель. Ниобий Олово Осмий. Палладий Платина Плутоний Полоний. Празеодим Прометий Протактини Радий Радон. Рений. Родий. Ртуть. Рубидий Рутений Самарий Свинец. Селен. Сера. . Серебро Скандий Стронций Сурьма. Таллий. Тантал. Теллур. Тербий. Технеций Титан. Торий. Тулий. Углерод Уран. . Фосфор Франций Фтор. . Хлор. . Хром. . Цезий. Церий. Цинк. . ЦирКОНН Эрбий.  [c.153]

    Кислород. 4 — Азот, 5 — Фтор, 6 — Хлор, 7 — Бром. 8 — Иод, 9 — Сера, 10 — Селен, И — Теллур. 12 — Полоний, 13 — Бор, 14 — Углерод, 15 — Кремний, 16 — Фосфор. 17 — Мышьяк, 18 — Сурьма, 19 — Висмут, 20 — Литий, 21 — Натрий. 22 —Калий, 23 — Аммоний, J4 — Рубидий, 25 — Це у1й, 26 — Бериллий, 27 — Магний, 28 — Кальций. 29 — Стронций, 30 — Барий. 31 — Радий, 32 — Цинк, 33 — Кадмий, 34 — Ртуть, 35 — Алюминий. 36 — Г аллий, 37 — Индий, 38 Таллий, 39 — Редкие земли, 40 — Актиний, 41 — Титан. 42 — Цирконий, 43 — Гафний, 44 — Торий, 45 — Германий, 46 — Олово,47 — Свинец, 48 — Ванадий, 49 — Ниобий, 50 — Тантал, 51 — Протактиний, 52 — Хром, 53 — Молибден, 54 — Вольфрам, 55 — Уран, 56 — Марганец, 57 — Никель, 58 — Кобальт, 59 — Железо, 60 — Медь. 61 — Серебро, 62 — Золото, 63 — Рутений, 64 — Родий, 65 — Палладий, 66 — Осмий. 67 — Иридий, 68 — Платина, 69 — Технеций (Мазурий), 70 — Рений, 71 — Трансурановые элементы. [c.125]


Смотреть страницы где упоминается термин Тантал натрием и серебром: [c.125]    [c.372]    [c.479]    [c.632]    [c.372]    [c.372]    [c.316]    [c.479]   
Успехи химии фтора (1964) -- [ c.101 ]

Успехи химии фтора Тома 1 2 (1964) -- [ c.101 ]




ПОИСК





Смотрите так же термины и статьи:

Натрия серебра

Тантал



© 2024 chem21.info Реклама на сайте