Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рубидий палладием и платиной

    Азот. . , Алюминий Аргон. . Барий. Бериллий. Бор. . , Бром. . Ванадий. Висмут. . Водород. Вольфрам Галлий. , Гелий. . Железо, Золото. . Индий. . Иод. . . Иридий Кадмий. Калий. . Кальций, Кислород Кобальт Кремний Криптон. Ксенон. . Лантан. . Литий. . Магний Марганец Медь. . . Молибден Мышьяк. Натрий. . Неон. . . Никель. , Олово. Осмий. . Палладий Платина Радий. Радон. Рений. Родий. . Ртуть. . Рубидий,  [c.285]


    Натрий Неодим Неон. . Нептуний. Никель Ниобий Олово. . Осмий. . Палладий. Платина Плутоний. Полоний. Празеодим Прометий. Протактиний Радий Радон Рений Родий Ртуть Рубидий Рутений Самарий. Свинец. . Селен. . Сера (ромб.) Серебро Скандий [c.22]

    Неон Никель Ниобий Олово. Осмий. Палладий Платина Полоний Радий. Радон. Рений. Родий. Ртуть. Рубидий Рутений Свинец. Селен. Сера. . Серебро Скандий Стронций Сурьма. Таллий. Тантал. Теллур. Титан. Торий. Уран. . Углерод Фосфор Фтор. Хлор. Хром. Цезий Церий Цинк, Цирконий [c.324]

    Неодим. Неон. . Никель. Ниобий. Олово. Осмий. Палладий Платина Полоний Празеодим Протактиний Радий Радон Рений Родий Ртуть Рубидий Рутений Самарий Свинец. Селен. Сера. . Серебро Скандий Стронций Сурьма Таллий. Тантал. Теллур. Тербий. Титан. Торий. Тулий. Углерод Уран.. Фосфор Фтор. . Хлор. . Хром. . Цезий. Церий. Цинк. . Цирконий Эрбий.  [c.613]

    Неодим Никель Ниобий Олово Осмий Палладий Платина Празеодим Рений Родий Ртуть Рубидий Рутений Самарин Свинец Селен Серебро Скандий Стронций Сурьма Тантал Таллий Теллур Тербий Титан Туллий Уран Фосфор Хром Цезий Цинк [c.161]

    Из опубликованных работ следует, что большая часть авторов применяли аппаратуру (включая и лампы с полым катодом), изготовленную в лаборатории. Эта черта атомно-абсорбционного метода характерна для всех новых инструментальных методов и не должна рассматриваться как недостаток метода, а лишь как неизбежный этап в его развитии. Изложенные в обзоре сведения показывают, что атомно-абсорбционный анализ сравнительно быстро получил широкое распространение. Если к началу 1961 года, по данным [36], с его помощью определялись или были установлены пределы обнаружения Ыа (0,05) , К (0,1), Си (0,1), Са (1), (0,01), Ре (0,1), Сс1 (0,07), 2п (0,2), Ag (0,2), Аи (1), Р1 (10), № (1), Рс (2), 5Ь (2), Ва (10), В1 (2), РЬ (0,5), Сз (10), Сг (0,1), Со (0,2), Са (3), и (1), Не (10), Мо (0,5), N1 (0,2), КЬ (2), 5г (0,1), Т1 (1), 5п (5), то к началу 1964 года, т. е. всего за три года, были освоены А1 (3), Ве (0,2), 1п (0,06), Ки (0,2), V (10), МЬ (250), Л (50), 5с (5), (50), 5е (5), а для многих элементов существенно улучшена чувствительность обнаружения (на порядок для калия, рубидия, стронция, меди, серебра, молибдена, родия, палладия, платины, хрома и висмута и на два порядка для лития, цезия, магния, кальция, золота, таллия, свинца, цинка и сурьмы). [c.183]

    Калий. . Криптон. Лантан. , Литий. . Лютеций. Менделевий Магний Марганец Молибден. Азот. . . Натрий. . Ниобий.. Неодим Неон. . . Никель. . Нобелий. Нептуний Кислород Осмий. . Фосфор Протактиний Свинец. . Палладий Прометий Полоний. Празеодим Платина Плутоний Радий. Рубидий Рений. Родий. Радон. Рутений Сера. . Сурьма. Скандий Селен Кремний Самарий Олово. Стронций Тантал.  [c.9]


    К4,119 Н1,273 Палладий(П) оксид Р6,725 8,il,445 Платина (II) оксид Р6,721 Рубидий оксид Р6,459 Сера(П) оксид Рб,194 Кремний (II) оксид Рб,335 Самарий(II) оксид С6,24 Олово(II) оксид Б3,172 К2,29б К4,118 Р6,351 Стронций оксид К4,120 Р6,438 [c.75]

    Марганец Молибден Натрий Ниобий Неодим Никель Осмий Фосфор (тверд.) Свинец Палладий Полоний Празеодим Платина Плутоний(жидк.) Радий Рубидий Рений Родий Рутений Сера Сурьма Скандий Селен Кремний Самарий Олово (жидкое) Стронций Тантал Тербий Технеций Теллур Торий Титан Таллий Тулий Уран Ванадий Вольфрам Иттрий Иттербий Цинк Цирконий [c.25]

    Серебро является уникальным катализатором окисления этилена в оксид. Другие катализаторы, например платина и палладий, катализируют окисление этилена только в диоксид углерода. На активность и селективность серебряного катализатора большое влияние оказывают метод его приготовления, а также добавка небольших количеств промоторов. Серебро обычно наносят на носители, в качестве которых используют корунд или оксид алюминия в различных модификациях, силикагель, пемзу. На активность и селективность катализатора оказывают влияние также степень дисперсности серебра, размер и форма кристаллитов. В качестве промоторов чаще всего используют различные хлорпроизводные соединения (кроме того очень малые количества хлорпро-изводных вводят в сырьевую смесь), соединения серы, селена, фосфора в виде соответствующих анионов, а также бария, кальция, алюминия, золота, калия, рубидия, цезия. Промоторы могут влиять как на активность, так и на селективность катализатора. Так, введение в небольших количествах электроотрицательных промоторов на основе хлора или селена повышает скорость реакции не изменяя селективности. Увеличение количества промотора сверх определенного значения приводит к снижению скорости окисления этилена и увеличению селективности. Это объясняется более сильным влиянием увеличения количества промотора на скорость реакции глубокого окисления (И). При введении в катализатор больших количеств промотора реакция может полностью затормозиться. Таким образом, регулируя природу и [c.195]

    Алюминий (79). Барий (79). Бериллий (79). Бор (80). Бром (80). Ванадий (80). Висмут (80). Водород (81). Вольфрам (81). Галлий (81). Гафний (81). Гелий (81). Германий (81). Гольмий (82). Диспрозий (82). Европий (82). Железо (82). Золото (83), Индий (83). Иридий (84). Иод (84). Иттербий (84). Кадмий (84). Калий (85). Кальций (85). Кобальт (85). Кремний (86). Лантан (86). Литий (86). Лютеций (86). Магний (86). Марганец (87). Медь (87). Молибден (88). Мышьяк (88). Натрий (89). Неодим (89). Никель (89). Ниобий (90). Олово (90). Осмий (90). Палладий (90). Платина (90). Плутоний (92). Полоний (92). Празеодим (92). Радий (92). Рений (92). Родий (92). Ртуть (92). Рубидий (93). Рутений (93) Самарий (93). Свинец (93). Селен (93). Сера (94). Серебро (94) Скандий (94). Стронций (94). Сурьма (94). Таллий (95). Тан тал (95). Теллур (95). Тербий (95). Титан (95). Торий (96) Туллий (97). Углерод (97). Уран (97). Фосфор (97). Хром (97) [c.126]

    Очень немногие люди могут утверждать, что своими собственными глазами видели такие металлы, как титан, неодим, литий, рубидий, европий или тантал, хотя эти элементы не так уж и редки. Например, природные запасы рубидия в 45 раз больше, чем свинца. А кто скажет, что свинец-редкий металл Выражение редкий означает только то, что до сих пор этот металл добывался лишь в относительно малых количествах, так как известны очень небольшие пригодные для разработки его месторождения. Сегодня эти так называемые редкие металлы - материалы для новой техники. Титан-коррозионно-устойчивый соперник алюминия и сталей, применение которого в химической промышленности особенно резко возросло в последние годы. Уран и торий - материалы энергетики будущего. Тантал-родоначальник особо прочных кислого- и жаростойких сплавов. Без платины, палладия и родия была бы немыслима химия катализаторов. Более 98% мировых запасов платиновых металлов, которые в 1971 г. исчислялись в 14 тыс. т, находятся в Южной Африке, Канаде и СССР. Мировое производство их составляет 119 т, причем 60% этого количества приходится на долю Советского Союза. Интересно то, что через 20 лет примерно половину производства благородных металлов будут составлять родий и палладий, выделенные из радиоактивных отходов ядерных реакторов. Желательно было бы из той же атомной мельницы получать теллур-99. Этот элемент-не только ценный сверхпроводник, но и отличный ингибитор коррозии. При незначительной его концентрации (до 0,1 мг/л) железо не ржавеет ни в воде, ни в солевых растворах даже при повышенных температурах. [c.28]

    Алюминий Барий. Бериллий Висмут. Вольфрам Железо Золото. Кадмий. Кальций Калий. Кобальт Литий. Магний Марганец Медь. . Молибден Натрий. Никель. Олово. Палладий Платина Рубидий Свинец. Серебро Стронций Сурьма Тантал. Торий. Углерод Уран. . Хром. . Цезий. Цчнк. . Цирконий [c.355]


    Ксенон. . Кюрий. . Лантан. . Литий. . Лютеций. Магний. . Марганец. Медь. . . Менделевий i oлибдeн. Мышьяк, Натрий. . Неодим.. Неон. . . Нептуний. Никель. . Ниобий. . Олсво. . Осмий. . Палладий. Платина. Плутоний. Полоний. Празеодим Прометий. Протактиний Радий. . Радон. Рений. Родий. Ртуть. Рубидий [c.597]

    Алюминий Барий. Бериллий Ванадий Г адолиний Галлил. Европий Железо Золото. Индий. Иттербий Иттрий. Кадмий Калий. Кальцин Кобальт Лантан. Литий. Магний. Марганец Медь. . Молибден Мышьм Натрий. Никель. Ниобий. Олово. Палладий Платина Рений. Родий. Ртуть. Рубидий Рутений Свинец. Селен. Серебро Скандий Стронций Сурьма. Таллий. Теллур.  [c.209]

    Неон. . . . Нептуний. . Нпкель. . . Нпобпй. . . Нобелий. . Олово. . . Осмий. . . Палладий. . Платина. . Плутоний. , Полоний. . Празеодим. Прометий. . Протактиний Радий. . . Радон. , . Рений. . . Ролтг . . . Ртуть. ... Рубидий. . Рутений. . Самарий. . Свинец. . . Селен. . . Сера. ... Серебро. . Скандий. . Стропций. . Сурьма. . . Таллий. . . Тантал. . . Теллур. . . Тербий. . . Технеций. . Титан. . . Торий. . , Тулий. . . Углерод. . Уран. ... Фермий. . . Фосфор. . . Франций. . Фтор. . . . Хлор. ... Хром. ... Цезий. . . Церих . . . Цинк. ... Цирконий Эйнштейний Эрбий. . ,  [c.363]

    Изменение атомных радиусов и межатомных расстояний при 20° закономерно связано с изменением характеристик механической жесткости и прочности металлов при той же температуре. При высоких температурах вследствие разных коэффициентов расширения максимумы жаропрочности перемеш аются на хром, молибден и вольфрам, которые обладают максимальными температурами плавления. Механическая жесткость металлических решеток может быть характеризована упругими модулями. Модули нормальной упругости Е, модули сдвига 6 и объемные модули К металлов больших периодов при 25° представлены на рис. 104. С возрастанием числа валентных электронов от одного до шести, т. е. от ш елочных металлов к хрому, молибдену и вольфраму, упругие модули сильно увеличиваются, причем переход от IV к V группе приводит к сравнительно небольшому повышению модулей. В четвертом периоде они достигают максимального значения у хрома, сильно понижаются при переходе к марганцу, сохраняют почти постоянное значение у келеза, кобальта, никеля, а затем резко падают при переходе к меди и цинку. В пятом и шестом периодах упругие модули сильно возрастают от рубидия и цезия к молибдену, вольфраму и далее продолжают увеличиваться к рутению и осмию, а затем уже резко понижаются при переходе к палладию, платине и метал-.тгам I и II побочных групп. [c.234]

    Реаетив выявляет микроструктуру сплавов типа нимоник и сварных швов в этих сплавах [114]. Нагретый до 80—85°С реактив можно применять для сплавов рубидия, палладия, осмия, платины и других тугоплавких металлов. Время травления 5—8 мин. [c.64]

    Объем ежегодного производства серной кислоты очень велик, и большая ее часть получается путем окисления сернистого газа в серный ангидрид на платиновых катализаторах или на пятиокиси ванадия [121]. Активными катализаторами являются также и другие переходные металлы — вольфрам, палладий, золото и хром, однако они не так активны и стойки, как платина. Другие катализаторы подразделяются [140] на низкотемпературные, подобно платине (особенно ванадаты натрия, калия, бария, серебра, рубидия, цезия, меди и олова), и высокотемпературные катализаторы, подобные пятиокиси ванадия (в особенности окиси вольфрама, титана, железа, олова, хрома и мышьяка). Однако в промышленности широко используются либо только платина и чистая пятиокись ванадия, либо пятиокись ванадия, промотированная сульфатами или пиросульфатами щелочных металлов. Применение платинированного асбеста в качестве катализатора было предложено еще в 1831 г., когда Филлипсу был выдан патент на этот процесс. Этот метод длительное время считался экономически не выгодным, так как ныль — неокислившаяся сера и следы ртути, мышьяка и фосфора (выделявшиеся из пиритов, использовавшихся в качестве серусодержащего сырья) — быстро отравляла платиновый катализатор. Исследования Винклера во Фрейбурге и Кпейтша и других химиков Баденской анилиновой и содовой фабрики показали, что сернистый газ и воздух можно очистить в достаточной степени впрыскиванием водяного пара и тщательной промывкой на фильтрах, пропитанных серной кислотой. [c.325]

    Ряд работ посвящен исследованию методом ИК-спектроскопии этилендиаминтетрацетатов четырехзарядных металлов — германия, олова, титана, циркония, гафния, тория [167], платины и палладия [161], иттрия, рубидия [168], меди [169] и редкоземельных элементов [170]. [c.73]

    Цветные металлы делятся на 4 группы 1) тяжелые медь, свинец, олово, цинк и никель 2) легкие алюминий, магний, кальций, калий и натрий часто к этой группе относят также барий, бериллий, литий и другие щелочные и щелочноземельные металлы 3) драгоценные, или благородные платина, иридий, осмий, палладий, рутений, родий, золото и серебро 4) редкие а) тугоплавкие вольфрам, молибден, ванадий, тантал, титан, цирконий и ниобий, к ним же иногда относят кобальт б) легкие бериллий, литий, рубидий и др. в) рассеянные германий, галлий, таллий, индий и рений, к ним причисляют также селен и теллур, которые являются скорее металлоидами, чем металлами г) редкоземельные лантан, иттрий, гафний, церий, скандий и др. д) радиоактивные торий, радий, актиний, протактиний, полоний, уран и заурановые элементы. Из группы редких металлов часто выделяют в качестве отдельной группы так называемые малые мегаллы сурьму, ртуть, висмут. [c.431]

    От этого недостатка свободна так называемая укороченная периодическая таблица химических элементов. Она построена из неукороченной" таблицы с иГзъятием из нее лантаноидов и актиноидов и переносом концов восемнадцатиэлементных периодов (по восемь элементов) под начало этих же периодов. Таким образом, медь (Си), серебро (Ag) и золото (Аи) попадают под соответствующие щелочные элементы — медь под калий, серебро под рубидий и золото под цезий. Аналогично дело обстоит и с остальными перенесенными элементами. Поскольку до переноса они располагались в концах восемнадцатиэлементных периодов, то естественно, что они по своим свойствам отличаются от тех элементов, под которые попадают после переноса. Поэтому перенесенные элементы располагают не точно под теми элементами той группы, в которую они попадают, а несколько сбоку. Таким образом, возникают группы элементов, расположенных в вертикальных столбцах, и каждая группа состоит из двух подгрупп главной и побочной. Так, в первую группу попадают щелочные металлы и подгруппа меди (Си, Ад, Аи). Во вторую группу входят бериллий, магний и щелочноземельные металлы, а также элементы подгруппы цинка (2п, С(1, Hg), затем в третью группу — подгруппы бора (В, А1, Оа, 1п, Т1) и подгруппа скандия (5с, У, Ьа, Ас) и т. д. Совершенно естественно, что в седьмую группу попадают галогены (Р, С1, Вг, I, А1) и столь отличные от них по свойствам элементы подгруппы марганца (Мп, Тс, Ке). Особый интерес вызывает к себе восьмая группа. Очевидно, в нее должны входить инертные газы и элементы подгруппы железа (Ре, Ки, Об). Вне какой-либо группы остаются элементы кобальт и никель, родий и палладий, иридий и платина. Ранее считали, что железо, кобальт, никель и платиновые металлы (рутений, родий, палладий и осмий, ири- нй, платина) образуют восьмую группу, а инертные газы вы- [c.11]

    Алюминий (А1) Барий (Ва). . Берилий (Ве) Ванадий (V). Висмут (В1). Вольфрам ( ) Железо (Ре). Золото (Аи). Иридий (Лг). Кадмий (Сс1). Калий (К). . Кальций (Са) Кобальт (Со) Кремний (81). Литий (Ь1). . Магний (Mg) Марганец (Мп) Медь (Си). . Натрий (Ыа). Никель (N1). Молибден (Мо) Ниобий (Nb). Олово (Зп). Осмий (Оз). Палладий (Р(1) Платина (Р1) Ртуть (Hg). Рубидий (НЬ) Свинец (РЬ). Серебро (Ag) Стронций (8г) Сурьма (5Ь). Тантал (Та). Титан (Т1). . Торий (ТЬ). Хром (Сг). . Цезий (Сз). Цинк (2п). . Цирконий (Zr) Теллур (Те).  [c.186]

    Литий Лютеций Ьи Магний Ма Марганец Мп Медь Си Менделевий М(] Молибден Мо Мышьяк Аз Натрий N8 Неодим Л с1 Неон N0 Нептуний Л"р Никель N1 Ниобий Олово 8п Осмпй Оз Палладий Р(1 Платина Плутоний Ри Полоний Ро Празеодим Рг Прометий Рш Протактиний Ра Радий На Радон Нп Рений Ве Родий НЬ Ртуть Нд Рубидий ВЬ Рутений Ки Самарий 8ш Свинец РЬ Селен 8е Сера 8 Серебро А Скандий 8с Стронций 8г Сурьма 8Ь Таллий Т1 Тантал Та [c.393]

    Марганец Молибден Натрий. Ниобий. Неодим. Никель. Осмий Фосфор. Свинец. Палладий Празеодим Платина Рубидий Рении. Родий. Рутений Сурьма Скандий Селен. Кремний Самарий Олово. . Стронци Тантал Теллур Торий. Титан.  [c.22]

    На рис. 99 представлено изменение валентных состояний металлов больших периодов в зависимости от их атомного номера. Указаны валентности каждого металла в различных химических соединениях, причем валентности, соответствующие наиболее прочным соединениям, даны зачерненными значками. От I до VI групп высшей валентностью, отвечающей наиболее прочной химической связи, оказывается валентность, соответствующая номеру группы. Только у хрома наряду с шестивалентными соединениями сравнительно прочными оказываются и трехвалентные. В VII группе наибольшая прочность соединений соответствует двухвалентному марганцу, который бывает и одновалентным, однако технеций и рений дают более стабильные четырех-, шести- и семивалентные соединения. В VIII группе у железа, кобальта и никеля наибольшая прочность связи соответствует двух- и трехвалептным соединениям, а у рутения и осмия — четырехвалентным. У родия и иридия наиболее прочны трехвалентные соединения, у никеля, палладия и платины — двухвалентные, а у металлов I группы — меди, серебра и золота — устойчивы одновалентные соединения. Итак, обычные химические валентности у элементов 4-го, 5-го и б-го периодов нарастают от 1+ для калия, рубидия и цезия до 6-(-для хрома, молибдена и вольфрама, а затем падают до 1+ У меди, серебра и золота. Принимая, что эти валентности определяют число электронов, отделяющихся от атомов соответствующих элементов при образовании [c.229]

    Во всех трех больших периодах при переходе от металла I группы (калия, рубидия и цезия) к металлам VI группы (хрому, молибдену и вольфраму) наблюдается сильное уменьшение межатомных расстояний и диаметров атомов, соответствующее предлагаемой гипотезе о полном отделении всех валентных электронов и обнажении р -оболочек ионов. Чем больше избыточный заряд таких ионов с одинаковыми электронными конфигурациями, тем, естественно, сильнее притяжение р-электронов к ядру и тем меньше диаметр этих ионов и короче расстояния между ними. Этому сокращению расстояний способствует и повышение электронной концентрации. Атомные диаметрых-мар-ганца (плотная кубическая модификация) и б-марганца (объемноцентрированная кубическая модификация) резко увеличены по сравнению с соответствующим диаметром атомов хрома и железа, что вновь указывает на пониженную степень ионизации атомов марганца (1- -). Железо, кобальт и никель имеют меньшие атомные диаметры вследствие того, что они двухкратно ионизированы. От железа к никелю межатомные расстояния уменьшаются в связи с сокращением размеров внешней электронной оболочки. Уменьшение межатомного расстояния продолжается в VII и VIII группах в связи с переходом от объемноцентрированной к плотнейшим упаковкам и достигает минимума у рутения и осмия. Межатомные расстояния от рутения к палладию и от осмия к платине слегка увеличиваются вследствие уменьшения электронной концентрации от 4 до 2 элЫтом и соответствующего понижения энергии межатомной связи. Далее к побочным металлам второй группы (цинку, кадмию и ртути) межатомные расстояния и атомные диаметры продолжают возрастать в связи с уменьшением концентрации свободных электронов. Атомные радиусы [c.233]


Смотреть страницы где упоминается термин Рубидий палладием и платиной: [c.466]    [c.125]    [c.29]    [c.311]    [c.6]   
Успехи химии фтора (1964) -- [ c.117 , c.118 ]

Успехи химии фтора Тома 1 2 (1964) -- [ c.117 , c.118 ]




ПОИСК





Смотрите так же термины и статьи:

Палладий

Палладий палладий

Рубидий



© 2025 chem21.info Реклама на сайте