Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение серебра тантале

    Согласно этой теории, катализ происходит только при структурном и энергетическом соответствии катализируемых молекул данному катализатору. Теорией Баландина было предсказано, что реакции каталитического гидрирования бензола и дегидрирования циклогексана могут идти только на переходных металлах, имеющих гранецентрированную кубическую структуру или гексагональную структуру и притом атомные радиусы строго определенных размеров. При этих условиях шестичленные циклы образуют на октаэдрических гранях кристаллов металла шесть связей М— — С — С, валентный угол которых близок тетраэдрическому углу. Данным условиям удовлетворяют палладий, платина, иридий, родий, осмий и все они являются активными катализаторами гидрирования бензола и дегидрирования циклогексана. В то же время металлы, обладающие объемноцентрированной структурой, например тантал, вольфрам, даже при почти таких же размерах их атомных радиусов, как у платиновых металлов, а также металлы, имеющие такую же кристаллическую структуру, как платина, но иные размеры атомных радиусов, в частности серебро, золото, или не относящиеся к переходным элементам — медь, цинк,—все эти металлы не проявляют каталитической активности в вышеуказанных реакциях. Таким образом, структура поверхностных соединений бензола и циклогексана с платиновыми металлами была описана и доказана. Мало того, было, в сущности, установлено, что в условиях катализа подобные соединения легко и притом в точности воспроизводятся. Иначе катализ был бы невозможен. [c.59]


    Определению молибдена роданидным методом не мешают ионы алюминия, кобальта, урана, тантала, натрия, калия, кремния, кальция, магния, титана, ванадия, хрома, марганца, никеля, цинка, мышьяка, серебра, олова, сурьмы и ртути. Соединения железа (III) и меди усиливают интенсивность окраски, вероятно, вследствие образования много-ядерных комплексов, содержащих молибден, железо (или медь) и роданид. Мешающее влияние вольфрама устраняют введением винной кислоты, препятствующей образованию роданидных комплексов вольфрама. [c.379]

    Купферон реагирует со многими катионами, образуя труднорастворимые комплексы. Растворимость купферона-тов металлов зависит от кислотности растворов регулируя кислотность, можно провести разделение катионов. Например, в сильнокислом растворе (5—10 %-ной соляной или серной) купфероном осаждаются железо, галлий, гафний, ниобий, палладий, полоний, олово, тантал и титан частично осаждаются висмут, молибден, сурьма, вольфрам. В слабокислом растворе осаждаются висмут, медь, ртуть, молибден, олово, торий, вольфрам. В нейтральной среде осаждаются (в присутствии ацетатного буфера) серебро, алюминий, бериллий, кобальт, хром, марганец, никель, свинец, РЗЭ, таллий и цинк. Купферон дает возможность отделить железо, титан, ванадий и цирконий от алюминия, кобальта, меди, арсенита и фосфата. Его часто используют для отделения мешающих катионов, например железа при определении алюминия, а также железа и ванадия при определении фосфора в феррованадии. [c.165]

    Метод концентрирования экстракцией серебра и других металлов в виде их диэтилдитиокарбаминатов нашел применение при анализе щелочи высокой чистоты [186], природных вод и илов [М9], тугоплавких металлов — титана, тантала, ниобия и ванадия [289]. Само определение заканчивается обычно спектральным методом. ТаК при анализе тугоплавких металлов примеси экстрагируют из растворов образцов с pH 6—6,5, прибавляя для предупреждения осаждения гидроокисей макроэлементов фтористоводородную и винную кислоты. При этом практически полностью экстрагируются Ад, Си, Аи(П1), Мп(П), РЬ, гп, Ре(П1), С(1, N1, Со, 1п, Т1(1), Т1(1П), и Зе, частично извлекаются Оа, У(1У), Р1(1У) и Зп(1У) и совсем не экстрагируется сурьма [289]. [c.154]

    Определение тантала и марганца в трихлорсилане основано на химическом концентрировании примесей на хлористом серебре и угольном порошке путем удаления основы испарением при слабом нагревании. [c.125]

    Хлорирование используют для определения большой группы элементов, образующих летучие хлориды — Ш, Мо, Зп, Мп, Та, 31, Ре, Mg, Т1, N1, Си, Сг и др. Хлорирующими, агентами являются хлор [453], хлориды серебра и меди [604, 784, 314, 644, 656] и некоторые другие хлориды [262]. Хлорид серебра широко используется также в качестве носителя (см. ниже) при анализе различных объектов — окислов урана [Ш99, 1186, 1009], тантала [c.143]


    Хлористое серебро применяется для повышения чувствительности спектрального определения вольфрама и тантала. При отсутствии необ- [c.487]

    Химико-спектральное определение алюминия, висмута, галлия, железа, индия, кальция, меди, магния, марганца, никеля, олова, свинца, сурьмы, серебра, таллия, тантала, титана, хрома и цинка в фтористоводородной, [c.528]

    На рис. 231 воспроизводится автоматическая запись спектра флуоресценции хромо-никелевого покрытия на серебряно-медной основе. Метод применим для определения гафния в цирконии и тантала в ниобии так, например, имеется возможность определять 1% тантала в ниобии с точностью 0,04% (т. е. 4% по отношению к содержанию анализируемого элемента). [c.295]

    Широкое использование нашел И. о. в гидрометаллургии извлечение благородных, цветных и редких металлов (серебро, медь, никель, хром и др.) из сбросных р-ров на катионитных или анионитных колоннах, а также хроматографич. разделение близких по свойствам элементов (редкоземельные элементы, гафний и цирконий, ниобий, тантал и др.). Ионообменные сорбенты используют также для очистки отбросных р-ров от химически вредных (фенолы и др. ионогенные органич. соединения) и радиоактивных веществ. Удаление ионов кальция методом И. о. позволяет на 5—10% уменьшить потери при нроиз-ве сахара из сахарной свеклы, получать хорошо сохраняющуюся консервированную кровь и приготовлять грудное молоко из коровьего. И. о. применяют в аналитич. химии для удаления мешающих определению ионов (напр., при определении сульфатов или фосфатов в присутствии ка- [c.155]

    Определению фосфора не мешают 1000-кратное по отношению к фосфору количество кремния, а также титан, тантал, ниобий, мышьяк, сурьма, олово, свинец, бор, индий, таллий, галлий, алюминий, кальций, магний, никель, марганец, медь, железо, ртуть и серебро, если их количества не превышают 250-кратного по [c.101]

    Железо, никель, кобальт, медь, платиновые металлы, молибден, алюминий, серебро в твердом состоянии растворяют небольшое количество водорода, в расплавленном больше. Титан, цирконий, лантан, ниобий, тантал, торий, редкоземельные металлы образуют гидриды определенного состава. Это хрупкие кристаллические вещества. [c.113]

    Химико-спектральное определение алюминия, висмута, вольфрама, галлия, золота, железа, индия, кальция, меди, магния, марганца, молибдена, никеля, олова, свинца, сурьмы, серебра, таллия, тантала, титана, хрома и цинка в кремнии, двуокиси кремния, кварце, тетрахлориде кремния [c.522]

    Колориметрическое определение мышьяка в германии и пленках германия Каталитическое определение иода в германии и пленках германия. . Флуориметрическое определение галлия в тетрахлориде германия. . . Флуориметрическое определение индия в тетрахлориде германия. . . Химико-спектральное определение алюминия, висмута, галлия, железа, зо лота, индия, кальция, магния, марганца, меди, никеля, свинца, сурьмы олова, серебра, таллия, тантала, титана, хрома и цинка в германии [c.523]

    Изменение концентрации точечных Д. используется для управления физ.-хим. св-вами твердых в-в и хим. процессами с их участием. Так, допируя галогениды серебра ионами кадмия и увеличивая тем самым в них концентрацию катионных вакансий, удается понизить адсорбцию на них додециламина-коллектора в процессе флотации. Точно так же допирование прир. сульфида свинца (галенита) ионами серебра и висмута изменяет заряд пов-сти н ее способность к адсорбции заряженных молекул коллектора при флотации. Допируя TiOj ионами тантала, можно существенно изменять скорость заполнения межгрануляр-ного пространства при спекании методом горячего прессования. Ионную проводимость ZrOj. возникающую вследствие допирования СаО, связывают с образованием вакансий и своб. ионов 0 . Точечные Д. изменяют скорость полиморфных превращений, коррозии металлов и сплавов, процессов спекания и рекристаллизации керамич. материалов. Т. наз. вакансионные состояния часто предшествуют образованию частиц продукта в виде самостоят. твердой фазы при гетерог хим. р-циях. В ряде случаев получение кристаллов с заданной концентрацией точечных Д. определенного вида необходимо при создании материалов для микроэлектроники, лазерной техники, люминофоров и др. [c.30]

    Катионы алюминия, сурьмы, мышьяка, бария, бериллия, висмута, бора, кадмия, кальция, церия (III), хрома (III), галлия, германия, железа (III), ланггана, свинца, магния, марганца, ртути (II), молибдена, никеля, ниобия, серебра, стронция, тантала, тория, титана, таллия, олова (IV), вольфрама, урана (VI), ванадия (V), цинка и циркония не мешают определению 10— 15 мкг кобальта, если каждый из них присутствует в количествах, не больших чем 0,1 г [1255]. [c.137]

    Первые опыты по экстракции проводились с небольшими навесками двуокиси кремния (2 г). Друокись кремния во фторопластовой чашке растворяли во фтористоводородной кислоте особой чистоты. Чашку помещали во фторопластовую камеру, подогреваемую до 200° С. После растворения пробы раствор Н281Рв охлаждали до комнатной температуры, вносили в него 1 мл 0,2%-ного водного раствора родамина 6Ж, определенное количество стандартного раствора тантала и проводили трехкратную экстракцию бензолом или дихлорэтаном (10 или 5 мл). В объединенный экстракт вносили 25 мг порошкообразного хлористого серебра и 5 жг угольного порошка. Чашку помещали на водяную баню из органического стекла и содержимое чашки выпаривали досуха. Сухой остаток концентрата на хлористом серебре и угольном порошке количественно переносили в кратер угольного электрода и подвергали спектральному анализу на спектрографе КС-55 в дуге постоянного тока силой 10 а. Абсолютная чувствительность этого метода составляет 0,4 мкг. [c.124]


    Главный метод отделения свинца основан на нерастворимости его сульфата. Описанное на стр. 262 выпаривание с серной кислотой служит для отделения свинца от многочисленных элементов, образуюш их растворимые сульфаты. При необходимости точного определения свинца в растворах, содержаш их соляную или азотную кислоту, их слуздует выпаривать до появления паров серной кислоты два или три раза, после каждого выпаривания обмывая стенки сосуда, чтобы быть уверенным в полном удалении соляной или азотной кислоты, так как эти кислоты частично растворяют РЬЗО . Следует также избегать добавления хлорной кислоты, так как она растворяет небольшое, но все же заметное количество сульфата свинца, даже и в т(зх случаях, когда в растворе имеется избыток свободной серной кислоты. Сульфат свинца слегка растворим также и в разбавленной серной кислоте, поэтому в точных работах его надо затем извлекать из фильтрата. При выполнении рядовых анализов, когда определяют только один свинец, сульфат свинца достаточно промывать разбавленным раствором серной кислоты, насыщенным сульфатом свинца при той же температуре, при которой применяется раствор. Часто рекомендуемое прибавление спирта уменьшает растворимость сульфата свища, но одновременно вызывает осложнения вследствие загрязнения осадка сульфата свинца сульфатами кальция и висмута, и поэтому в тех случаях, когда фильтрат надо подвергнуть Дальнейшему анализу, спирт добавлять не следует. Вместе с сульфатом свинца выделяется кремнекислота, а также и вольфрам, ниобий, тантал, барийименее полно стронций и кальций. Висмут, сурьма, серебро, медь, а также, без сомнения, и некоторые другие элементы отчасти загрязняют сульфат свинца. Никель и хром иногда создают затруднения, если серная кислота нагревалась выше температуры появления ее паров или почти полностью была выпарена. [c.258]

    Можно было бы привести примеры концентрирования, включающие использование и других экстрагентов. Микроколичества галлия извлекали из растворов НС1 с помощью ДЭЭ (или ДИПЭ) при определении его в бокситах [635], индии высокой чистоты [637], различных горных породах [633,] бутилацетатом — при определении в алюминии высокой чистоты [665] и в цинке [660]. Железо концентрировали амилацетатом из H I при определении его в Ti l4[1836], трибутилфосфатом из роданидного раствора при определении в металлическом никеле [800, 802]. Таллий, содержа щийся в рудах, выделяли бутилацетатом из 1 ilf НВг в присутствии свободного брома. Тантал экстрагировали из фторидных растворов МИБК, определяя его в серебре [1548] и циклогексаноном — при определении в цирконии [1543]. Иодидные комплексы РЬ, d, In, Bi, u и Sb концентрировали МИБК нри определении названных элементов фотометрическими методами в металлическом железе, кобальте, цинке, хлоридах алюминия и хрома н других объектах [610]. [c.313]

    В качестве коллекторов применяют сульфид меди для соосаждения цинка, молибдена, свинца и других металлов сульфид кадмия, и висмута — для соосаждения меди, цинка, свинца, никеля, кобальта, серебра, ртути, молибдена и др. гидроокись алюминия— для железа, свинца, хрома, висмута, кобальта, олова и др. двуокись марганца — для кобальта [22, 23] фосфоромолибдат аммония как коллектор предложен для концентрирования вольфрама [24], ниобия и тантала при определении этих примесей в молибдене [25] и для соосаждения микроколичеств германия [26]. Было установлено, что с фосфоромолнбдатом соосаждаются элементы V/, ЫЬ, Та, Т1, Ре, Са, Се, 1п, Сз, Аи, 81, Mg, Са, 5г, Ва, Оу, 2г, 5п, V, Сг, Аз, Мп, Со, N1. [c.172]

    Совсем недавно Дункельманом [13] были исследованы катоды из никеля, сплава серебра и магния, тантала, окисленного никеля. Было установлено, что все они нечувствительны к солнечной радиации, проникающей через земную атмосферу, но обнаруживают некоторую чувствительность для области длин волн ниже 2800 А. Чувствительность увеличивается по мере уменьшения длины волны вплоть до 2000 А, где она уже ограничивается пропускаемостью окружающей трубку атмосферы. Ожидалось, что наибольший эффект будет наблюдаться для более коротких волн Гинтереггер и Ватанабэ [26] показали, что для вакуумного ультрафиолета фотоэлектрический выход платины, никеля и вольфрама быстро возрастает в области от 1400 до 1216 А. Для обнаружения и определения паров воды по поглощению волны 1216 Ь (а) Гартон, Уэбб, и Уилди [17] использовали фотоумножитель с вольфрамовым катодом и окном из фтористого лития. [c.83]

    ИСП-спектроскопия является в США одним из основных методов определения металлов в воде, воздухе и почве. На ее основе разработаны стандартные методики (утвержденные на государственном уровне) определения в воздухе рабочей зоны промышленных предприятий следовых количеств тантала, гафиния, серебра, бора и многих других металлов и их соединений. [c.232]

    Рентгеноспектральный, рентгенофлуоресцентный и масс-спектральный методы анализа. В этих методах экстракционное концентрирование применялось пока очень мало. Так, предложен метод определения малых количеств тантала в серебре , основанный на количественной экстракции его метилизобутилкетоном из раствора, 6 Л1 по соляной кислоте и 0,4 М по фтористоводородной кислоте, и последующем рентгеноспектральном определении в органической фазе. Хаббард и Грин экстрагировали медь, никель, цинк и свинец в виде дитизонатов хлороформом при рентгеноспектральном определении их в вольфраме и трехокиси вольфрама высокой чистоты. Макрокомпоиент маскировали винной кислотой. Микропримеси реэкстрагировали затем в воду, подкисленную до pH 2 соляной кислотой. Реэкстракт фильтровали через бумажный диск, пропитанный ионообменной смолой фильтрование повторяли, используя другой диск. Диски [c.201]

    Каммори [72] рассматривает методы определения в металлическом железе содержания меди, серебра, золота, кальция, бора, алюминия, углерода, мышьяка, висмута, хрома и кобальта. В работе Каммори [73] дан обзор методов определения в чистом железе содержания цинка, иттрия, кремния, олова, титана, циркония, ванадия, тантала, селена и вольфрама. В своей другой работе [74] автор приводит обзор методов определения в чистом железе содержания калия, магния, германия, свинца, гафния, фосфора, сурьмы, ниобия, кислорода, серы, молибдена, вольфрама, марганца и никеля. [c.27]


Смотреть страницы где упоминается термин Определение серебра тантале: [c.459]    [c.590]    [c.111]    [c.137]    [c.488]    [c.488]    [c.155]    [c.45]    [c.111]   
Аналитическая химия серебра (1975) -- [ c.207 ]




ПОИСК





Смотрите так же термины и статьи:

Тантал



© 2025 chem21.info Реклама на сайте