Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сурьма определение в тантале

    Первые представляют собой тип аммонийных солей ацидо-комплексов металлов вторые — тип аммиачных (или аминных) комплексов. Возможно также образование смешанных комплексов, которые содержат различные лиганды внутри координационной сферы. Эти комплексы в последнее время очень интенсивно изучаются п применяются для определения многих ионов (сурьма, медь, тантал, таллий и ряд других). [c.92]


    Соединения ацидокомплексов металлов с основными красителями. Возможности фотометрического определения ряда элементов, в особенности бора, сурьмы и тантала, значительно улучшились с разработкой методов, основанных на экстракции соединений их ацидокомплексов с основными красителями. В описанных [c.349]

    Лимонная кислота обесцвечивает окраску, тогда как винная и щавелевая кислоты не оказывают заметного влияния. Поэтому в присутствии винной и щавелевой кислот можно проводить определение титана, что имеет существенное значение, когда одновременно присутствуют соединения, легко подвергающиеся гидролизу (соединения сурьмы, ниобия, тантала). [c.145]

    Определению молибдена роданидным методом не мешают ионы алюминия, кобальта, урана, тантала, натрия, калия, кремния, кальция, магния, титана, ванадия, хрома, марганца, никеля, цинка, мышьяка, серебра, олова, сурьмы и ртути. Соединения железа (III) и меди усиливают интенсивность окраски, вероятно, вследствие образования много-ядерных комплексов, содержащих молибден, железо (или медь) и роданид. Мешающее влияние вольфрама устраняют введением винной кислоты, препятствующей образованию роданидных комплексов вольфрама. [c.379]

    Купферон реагирует со многими катионами, образуя труднорастворимые комплексы. Растворимость купферона-тов металлов зависит от кислотности растворов регулируя кислотность, можно провести разделение катионов. Например, в сильнокислом растворе (5—10 %-ной соляной или серной) купфероном осаждаются железо, галлий, гафний, ниобий, палладий, полоний, олово, тантал и титан частично осаждаются висмут, молибден, сурьма, вольфрам. В слабокислом растворе осаждаются висмут, медь, ртуть, молибден, олово, торий, вольфрам. В нейтральной среде осаждаются (в присутствии ацетатного буфера) серебро, алюминий, бериллий, кобальт, хром, марганец, никель, свинец, РЗЭ, таллий и цинк. Купферон дает возможность отделить железо, титан, ванадий и цирконий от алюминия, кобальта, меди, арсенита и фосфата. Его часто используют для отделения мешающих катионов, например железа при определении алюминия, а также железа и ванадия при определении фосфора в феррованадии. [c.165]

    Определение хрома с применением дифенилкарбазида проводят при анализе алюминия (предел обнаружения Сг 1-10 %, относительная ошибка 20%) [151, 828], бериллия высокой чистоты [965], никеля [251, германия и его соединений (предел обнаружения Сг 3-10 % при навеске 2 г) [298], титана особой чистоты [301], иодидов и хлоридов щелочных металлов [281], соединений молибдена [1120], тантала (предел обнаружения Сг 1 -10 %) [299], олова [347], сурьмы (предел обнаружения Сг 1-10 %) [300], редкоземельных элементов повышенной чистоты [108], рения и его соединений [384], металлической ртути (предел обнаружения 5- [c.45]


    Метод концентрирования экстракцией серебра и других металлов в виде их диэтилдитиокарбаминатов нашел применение при анализе щелочи высокой чистоты [186], природных вод и илов [М9], тугоплавких металлов — титана, тантала, ниобия и ванадия [289]. Само определение заканчивается обычно спектральным методом. ТаК при анализе тугоплавких металлов примеси экстрагируют из растворов образцов с pH 6—6,5, прибавляя для предупреждения осаждения гидроокисей макроэлементов фтористоводородную и винную кислоты. При этом практически полностью экстрагируются Ад, Си, Аи(П1), Мп(П), РЬ, гп, Ре(П1), С(1, N1, Со, 1п, Т1(1), Т1(1П), и Зе, частично извлекаются Оа, У(1У), Р1(1У) и Зп(1У) и совсем не экстрагируется сурьма [289]. [c.154]

    Химико-спектральное определение алюминия, висмута, галлия, железа, индия, кальция, меди, магния, марганца, никеля, олова, свинца, сурьмы, серебра, таллия, тантала, титана, хрома и цинка в фтористоводородной, [c.528]

    Мешаюш,ие ионы. Ту же реакцию дает большое число элементов, но применяя реактив в определенной концентрации, устанавливая pH раствора равным 6,0 и добавляя тиогликолевую кислоту, действующую как восстановитель и комплексообразователь, можно определять 5 мкг алюминия в присутствии по меньшей мере 150-кратного количества следующих элементов вольфрама, тория, никеля, кобальта, церия, сурьмы, меди, молибдена, хрома, олова, кадмия, висмута, свинца, цинка, ниобия, тантала, титана, железа, урана и марганца. [c.703]

    Методы анализа, основанные на экстракции ацидокомплекса определяемого элемента с катионом основного красителя и измерении светопоглощения или флуоресценции экстракта, принадлежат к числу наиболее эффективных средств современной аналитической химии. Они приобрели за последние 5—10 лет преобладающее значение среди других химических методов определения малых и средних содержаний галлия, индия, таллия, сурьмы, бора и тантала. Возможности дальнейшего развития методов далеко не исчерпаны. [c.5]

    Проверка пригодности экстрагента. Явления постепенного ослабления окраски экстрагируемой комплексной соли могут быть обусловлены как некоторыми свойствами, присущими данному соединению красителя, так и наличием специфических загрязнений в водной фазе или, чаще, в экстрагенте. В первом случае применяют обязательную стабилизацию экстракта ацетоном (методы определения германия и тантала). Помехи второго вида наблюдаются главным образом при определении элементов, экстрагируемых в высшем из возможных валентных состояний,— сурьмы (V), золота (П1), таллия (1П) Для проверки пригодности вновь поступившей партии (бутыли) экстрагента (бензола или толуола) экстрагируют, руководствуясь прописью Определения, количества элемента, близкие к й мин и макс, и измеряют оптическую плотность экстрактов сразу после расслоения фаз затем оставляют раствор в кювете, закрытой покровной пластинкой, на 15—20 мин. в затемненном месте и повторяют измерение. Данные второго измерения могут быть несколько ниже, чем первого (результат отстаивания экстракта), но после второго измерения они не должны изменяться по меньшей мере в течение 1—2 час. отношение оптических плотностей первого и второго экстрактов (за вычетом холостого опыта) должно быть не меньшим, чем отношение отобранных в первом и втором случаях количеств элемента. [c.162]

    Определению фосфора не мешают 1000-кратное по отношению к фосфору количество кремния, а также титан, тантал, ниобий, мышьяк, сурьма, олово, свинец, бор, индий, таллий, галлий, алюминий, кальций, магний, никель, марганец, медь, железо, ртуть и серебро, если их количества не превышают 250-кратного по [c.101]

    Вместо хлора можно применять газообразный хлористый водород и процесс вести при нагревании до температуры красного каления. Так, при обработке смеси SiO.,, Si и Si газообразным хлористым водородом, кремний и его карбид отделяются в виде хлорида, а диоксид кремния задерживается в остатке [5.1779]. Газообразный хлористый водород предпочитают хлору при определении оксида алюминия в высокочистом алюминии [5.1780] и оксида бериллия в металлическом бериллии [5.1771 ], поскольку реакция с НС1 более мягко протекает при 270—300 °С. Тантал нагревают в газообразном хлористом водороде при 430 °С [5.1781 ], сурьму — при 300 С [5.1782 ] (см. разд. 5.2). Загрязнения в свинце и висмуте определяют плавлением металлов с добавлением к ним 5—8 % (масс.) хлорида свинца при 500—600 °С, примеси А1, Си, Fe, Mg, Na и Те экстрагируются из металла и концентрируются в расплаве хлорида свинца [5.1783]. [c.258]

    Определению титана не мешают железо (И), тантал, хром, алюминий, марганец, цинк, кадмий, олово, сурьма, цирконий, комплексон III, фториды и фосфаты, небольшие количества никеля ванадия. Мешают кобальт, вольфрам, молибден, ниобий. [c.144]

    Определению титана не мешают алюминий, олово, сурьма, тантал, вольфрам Д2/. Значительно углубляется окраска экстракта С Л =420 нм) и её интенсивность при проведении реакции в присутствии роданида Д4/. [c.30]

    При анализе реальных объектов экспериментатор бывает поставлен перед фактом определенная концентрация кислоты, присутствие комплексообразователя (например, фторид-иона), концентр.ация молибдата (при определении Р и Аз в молибда-тах) в системе. Точное знание области оптимизации экстракции ФМК и ММК позволяет без предварительных экспериментов установить концентрацию второго компонента системы. С использованием данных об областях оптимизации экстракции разработаны методы определения примеси фосфора в особо чистых оксидах тантала и ниобия, эфирате сурьмы, органических кислотах с чувствительностью 1 10 — Т-10 % (масс.). [c.112]


    Силикокальций. Метод определения содержания фосфора Силикокальций. Метод определения кремния Силикокальций. Метод определения содержания железа Силикокальций. Метод определения кальция Силикокальций. Методы оиределения алюминия Феррониобий. Метод определения фосфора Феррониобий. Метод определения кремния Феррониобий. Метод определения суммы ниобия и тантала Феррониобий. Метод определения тантала Ферроьшобий. Метод определения алюминия Феррониобий. Метод определения титана Ферроьшобий. Метод определения содержания азота Феррониобий. Метод определения содержания кобальта Феррониобий. Метод определения содержания висмута Феррониобий. Метод определения содержания олова Феррониобий. Метод определения содержания мышьяка Феррониобий. Метод определения содержания сурьмы Феррониобий. Метод определения содержания цинка Феррониобий. Метод определения содержания свинца Ферросиликомарганец. Методы определения марганца [c.567]

    При дегидратации кремневой кислоты выпариванием с хлорной кислотой практически полностью выделяются сурьма, ниобий, тантал, олово и вольфрам. Если присутствуют висмут, германий, молибден и ванадий в больших количествах, то они могут частично попадать в осадок. Так как эти элементы мешают определению кремния большинством фотометрических методов, то их необходимо удалять, что осуществляют следующим образом. Помешают бумажный фильтр с дегидратированной кремневой кг слотой в платиновую лодочку для сожжения и осторожно сжигают бумагу. Затем помещают лодочку в трубку печи для сожжения, нагретой примерно до 700°, и медленно пропускают [c.38]

    Соотношение величин Оф и Оф (подг) в различных ЭФМ-ОК неодинаково оно зависит от распространенности определяемого элемента и избирательности метода. При определении индия с родамином 6Ж, галлия с родамином С и родамином 6Ж или сурьмы с кристаллическим фиолетовым значения 7)( ,(ан) обычно близки к Оф. Величина реактивного опыта при определении бора обычно в несколько раз превышает величину аналитического фона, обусловленного экстрагированием фторида красителя значительные реактивные помехи, связанные главным образом с загрязнением раствора бором, наблюдаются при определении тантала и т. д. [c.113]

    В результате экстракции полностью отделяются олово и сурьма, количества же тптана, ниобия и вольфрама уменьшаются настолько, что эти элементы уже не мешают дальнейшему колориметрическому определению тантала. [c.336]

    Определению тантала пирогалло. юм мешают молибден, вольфрам, сурьма, уран и фториды. Последние можно маскировать борной кислотой. [c.283]

    Освоение эффекта Мёссбауэра позволило проводить измерения в пределах 15-го знака. Метод основан на взаимодействии в определенных условиях гамма-квантов с атомными ядрами. Возможность использования этого достижения в химическом анализе уже показана на примере определения олова. Теоретически оправдано применение данного метода для аналитического определения следующих элементов железа, никеля, цинка, германия, мышьяка, рутения, сурьмы, теллура, иода, ксенона, цезия, гафния, тантала, вольфрама, рения, осмия, иридия, платины, золота, таллия, многих лантаноидов и актиноидов. Можно ожидать появления приборов, в датчиках которых используется высокая чувствительность твердых веществ к неуловимым следовым количествам реагирующих о ними веществ. Ведь при хемосорбции всего нескольких сотен атомов последних свойства твердого тела заметно изменяются, Сверхвысокочувствитмьными датчиками могут служить некото [c.11]

    С фенилфлуороном реагируют также титан, цирконий, гафний, олово ( V), ниобий, тантал, сурьма (III), теллур, молибден, вольфрам. Окислители ванадий (V),xpoM (VI), марганец (VII) и церий (IV) окисляют реагент. Поны галлия и мышьяка в кислых раствора.ч не реагируют с фенилфлуороном. Не мешают определению фторид (<1 м-г в 10 мл) и железо (III) (100 мкг в 10 мл). [c.381]

    Бибер и Вечержа [373] и независимо от них Маджумдар и Чоудху-ри [728] предложили весовой метод определения шестивалентного урана осаждением с помощью купферона. Количественное осаждение имеет место при pH в пределах 4—9. Вследствие более высоких значений pH осаждения мешающее влияние других элементов в данном случае оказалось значительно большим, чем при осаждении четырехвалентного урана. Однако теми же авторами [373, 728] было показано, что применение комплексона III позволяет устранить мешающее влияние подавляющего большинства элементов. В этих условиях полностью остаются в растворе щелочные и щелочноземельные элементы, Mg, Ag, Hg, РЬ, Си, Сё, Мп, Zn, Со, Ni, В1, Ре, Ое, 5п, ТЬ, Ьа, Се и редкоземельные элементы. Определению также не мешают небольшие количества титана (IV) и циркония. Мешающее влияние алюминия, сурьмы (III), олова (IV), ниобия и тантала устраняют прибавлением винной кислоты. Присутствие [c.71]

    Катионы алюминия, сурьмы, мышьяка, бария, бериллия, висмута, бора, кадмия, кальция, церия (III), хрома (III), галлия, германия, железа (III), ланггана, свинца, магния, марганца, ртути (II), молибдена, никеля, ниобия, серебра, стронция, тантала, тория, титана, таллия, олова (IV), вольфрама, урана (VI), ванадия (V), цинка и циркония не мешают определению 10— 15 мкг кобальта, если каждый из них присутствует в количествах, не больших чем 0,1 г [1255]. [c.137]

    Метод пламенной фотометрии широко применяется в аналитической практике для определения кальция при клинических анализах крови [22,166,171,213, 561, 784, 1649] и других биологических объектов [482, 561, 1520], при анализе почв [226, 428, 467, 969], растительных материалов [7, 225, 466, 993, 1522], сельскохозяйственных продуктов [52, 306], природных вод [15851, морской воды [594, 791]. Метод находит применение при определении кальция в силикатах [67], глинах [6, 59], полевом шпате [637], баритах [67], рудах [164, 1136, 13981, а также в железе, сталях, чугунах [326, 1149], ферритах [949], хромитовой шихте [70], основных шлаках [1045], мартеновских шлаках [988], доменных шлаках [1510], силикокальции [1012], керамике [395]. Описаны методы пламенной фотометрии для определения кальция в чистых и высокочистых металлах уране [201, 12011, алюминии [1279], селене [1454], фосфоре, мышьяке II сурьме [1277], никеле [1662], свинце [690], хроме [782] и некоторых химических соединениях кислотах (фтористоводородной, соляной, азотной [873]), едком натре [235], соде [729], щелочных галогенидах [499, 885], арсенатах рубидия и цезия [316], пятиокиси ванадия [364], соединениях сурьмы [365, 403], соединениях циркония и гафния [462, 1278], солях цинка [590], солях кобальта и никеля [1563], карбонате магния [591], ниобатах, тантала-тах, цирконатах, гафнатах и титанатах лития, рубидия и цезия [626], стронциево-кальциевом титанате [143], паравольфрамате аммония [787]. [c.146]

    Таллий в форме соли его комплексного бромидного аниона с родамином В экстрагируют диизопропиловым эфиром и экстракт фотометрируют. Методика применена для определения таллия в оловокадмиевых сплавах [331]. Сходная методика предложена для определения сурьмы и таллия в свинце [332]. Для определения сурьмы в цинке и окиси цинка экстракцию комплекса производят из солянокислого раствора [333]. Экстракцию индия рекомендуется производить из бромидных растворов с помощью родамина В [334]. Тантал определяют путем экстракции этилацетатом соединения танталфтористоводородной кислоты с родамином В. Экстракт фотометрируют при 556 ммк [335]. Соединение урана (VI) с родамином В и бенз011н0н кислотой экстрагируют бензолом, экстракт фотометрируют. Методика предложена для анализа урансодержащих материалов [336]. [c.252]

    Купфероновый метод вполне надежен для определения железа, титана, циркония, ванадия и в отдельных случаях — олова, ниобия, тантала, урана (IV), галлия и, вероятно, гафния. Этим методом можно определять также медь и торий, но осаждать их следует из слабокислых растворов результаты определения этих элементов менее удовлетворительны, чем при обычно принятых методах. Из числа элементов, мешающих применению кунферонового метода, следует упомянуть таллий (III), сурьму (III), палладий, ниобий, тантал, молибден, висмут, церий, торий, вольфрам и большие количества кремния, фосфора, щелочноземельных и щелочных металлов Торий и церий частично выделяются купфероном даже из растворов, содержащих 40% (по объему) серной кислоты. Уран (VI) не влияет на осаждение купфероном. Число элементов, мешающих определению купфероном, может показаться очень значительным, но нужно принять во внимание, что часть из них относится к группе сероводорода и может быть легко отделена перед осаждением купфероном, а некоторые элементы встречаются редко. Здесь следует указать на представляющие интерес разделения, которые можно осуществить этим методом, а именно 1) отделение железа, титана, циркония, галлия и ванадия при анализе чистых алюминия, никеля, цинка и т. п. 2) отделение осаждающихся купфероном элементов от алюминия, хрома, магния и фосфора при анализе различных руд и горных пород 3) отделение ванадия (V) от урана (VI), разделение урана (IV) и урана (VI) и отделение ванадия от фосфора. Осажденяе купфероном может быть осуществлено в присутствии винной кислоты, что дает возможность предварительно отделять железо в виде сульфида. Для этого в раствор вводят достаточное количество винной кислоты, чтобы он оставался прозрачным нри последующем добавлении аммиака. В кислом растворе восстанавливают железо сероводородом и затем подщелачивают аммиаком. Выделившийся осадок сульфида железа отфильтровывают, как описано нри осаждении сульфидом аммония (стр. 115), фильтрат подкисляют серной кислотой, удаляют сероводород кипячением и после этого проводят осаждение купфероном. [c.144]

    Главный метод отделения свинца основан на нерастворимости его сульфата. Описанное на стр. 262 выпаривание с серной кислотой служит для отделения свинца от многочисленных элементов, образуюш их растворимые сульфаты. При необходимости точного определения свинца в растворах, содержаш их соляную или азотную кислоту, их слуздует выпаривать до появления паров серной кислоты два или три раза, после каждого выпаривания обмывая стенки сосуда, чтобы быть уверенным в полном удалении соляной или азотной кислоты, так как эти кислоты частично растворяют РЬЗО . Следует также избегать добавления хлорной кислоты, так как она растворяет небольшое, но все же заметное количество сульфата свинца, даже и в т(зх случаях, когда в растворе имеется избыток свободной серной кислоты. Сульфат свинца слегка растворим также и в разбавленной серной кислоте, поэтому в точных работах его надо затем извлекать из фильтрата. При выполнении рядовых анализов, когда определяют только один свинец, сульфат свинца достаточно промывать разбавленным раствором серной кислоты, насыщенным сульфатом свинца при той же температуре, при которой применяется раствор. Часто рекомендуемое прибавление спирта уменьшает растворимость сульфата свища, но одновременно вызывает осложнения вследствие загрязнения осадка сульфата свинца сульфатами кальция и висмута, и поэтому в тех случаях, когда фильтрат надо подвергнуть Дальнейшему анализу, спирт добавлять не следует. Вместе с сульфатом свинца выделяется кремнекислота, а также и вольфрам, ниобий, тантал, барийименее полно стронций и кальций. Висмут, сурьма, серебро, медь, а также, без сомнения, и некоторые другие элементы отчасти загрязняют сульфат свинца. Никель и хром иногда создают затруднения, если серная кислота нагревалась выше температуры появления ее паров или почти полностью была выпарена. [c.258]

    Остаток, выделенный из минералов. Можно сказать вполне определенно, что примеси в кремнекислоте, выделенной при анализе минералов, сильно отличаются от примесей в кремнекислоте, выделенной из силикатных горных пород. Это различие находится, конечно, в зависимости от состава анализируемых минералов и иногда оно очень незначительно или совсем отсутствует, но в большинстве случаев оно велико, особенно при анализе минералов, содержащих титан, цирконий, олово, вольфрам, сурьму, ниобий и тантал. При анализе таких минералов нужно применять особые методы выделения кремнекислоты перед окончательным ее определением например, в случае присутствия сурьмы обезвоживание кремнекислоты надо проводит1> с серной кислотой, а не с соляной. [c.946]

    Одной из основных областей применения источников 7-излучения является гаммааппаратостроение для промышленной радиографии, используемой в полевых условиях строительства магистральных газо- и нефтепроводов, при проведении монтажных и строительных работ, строительстве атомных и тепловых электростанций, химических производств, в энергетическом и транспортном машиностроении, судостроительной промышленности и т. п. Имеется опыт практического применения источников с изотопами железа-55, кадмия-109, плутония-238, америция-241, тулия-170 при создании комплекса геологической и технологической аппаратуры для определения концентрации металлов в процессе добычи и переработки руд. Приборы используются для определения суммы редкоземельных элементов меди, цинка, свинца, олова, железа, никеля, молибдена, тантала, ниобия, циркония, бария, сурьмы, вольфрама, урана и других металлов. [c.560]

    Ошман В. А. Упрощенный метод определения суммы пятиокисей ниобия и тантала. Бюлл. Всес. н.-и. ин-та минерального сырья. (М-лы научно-методические и производ. лабор. геол. управлений. Ком-т по делам геологии при СНК СССР), 1944, № 12 (24), с. 1—3. Машинопись. 5063 Павелкина В. П. Полярографическое определение сурьмы. Уч. зап. Казанск. ун-та, [c.196]

    Даже в присутствии комплексона и цианида определению мешает присутствие титана, ванадия, ниобия, тантала и урана, которые можно замаскировать перекисью водорода. Мешают также цирконий, галлий, сурьма и висмут, которые следует выделить купферроном непосредственно перед определением алюминия. Индий экстрагируют в виде диэтилдитиокарбамата, а бериллий — в виде оксихинолята при pH 5. [c.214]

    Предложен еще один способ отделения алюминия от других элементов экстракцией его окси.чинолята добавлением ЭДТА и цианид-ионов при pH 8,5—9,0. В этих условиях шелочноземельные и редкоземельные элементы не мешают определению алюминия, однако висмут, галлий, индий, ниобий (V), тантал (V),сурьма (III), сурьма (V), титан (IV), уран (VI), ванадий (IV), цирконий и небольшие количества бериллия экстрагируются. [c.702]

    Способы выполнения и химизм этих цветных реакций давно описаны как для реакций безэкстракционного варианта (цветные твердофазные реакции [6]), так и для реакций экстракционного варианта [3], В последнее время на основе соответствующих цветных твердофазных реакций было описано много экстракционно-фотометрических методов определения различных элементов. Описаны, например, методы определения сурьмы, таллия, галлия, индия, рения, вольфрама, ртути, тантала, бора и многие др. [30]. Прием иллюстрируется схемой 4. [c.20]

    Освоение эффекта Мёссбауэра позволило проводить измерения Б пределах 15-го знака. Метод основан на взаимодействии в определенных условиях гамма-квантов с атомными ядрами. Возможность использования этого достижения в химическом анализе уже показана на примере определения олова. Теоретически оправдано применение данного метода для аналитического определения следующих элементов железа, никеля, цинка, германия, мышьяка,, рутения, сурьмы, теллура, иода, ксенона, цезия, гафния, тантала, вольфрама, рения, осмия, иридия, платины, золота, таллия, многих лантанидов и актинидов. [c.13]

    Каммори [72] рассматривает методы определения в металлическом железе содержания меди, серебра, золота, кальция, бора, алюминия, углерода, мышьяка, висмута, хрома и кобальта. В работе Каммори [73] дан обзор методов определения в чистом железе содержания цинка, иттрия, кремния, олова, титана, циркония, ванадия, тантала, селена и вольфрама. В своей другой работе [74] автор приводит обзор методов определения в чистом железе содержания калия, магния, германия, свинца, гафния, фосфора, сурьмы, ниобия, кислорода, серы, молибдена, вольфрама, марганца и никеля. [c.27]


Смотреть страницы где упоминается термин Сурьма определение в тантале: [c.17]    [c.22]    [c.160]    [c.101]    [c.109]    [c.738]    [c.681]    [c.337]    [c.315]   
Эмиссионный спектральный анализ атомных материалов (1960) -- [ c.375 , c.387 , c.388 ]




ПОИСК





Смотрите так же термины и статьи:

Тантал



© 2025 chem21.info Реклама на сайте