Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Протекторы цинк и его сплавы

    Борьба с коррозией (электрохимическим и химическим разрушением металлов и сплавов) — проблема особой важности. Важнейшими методами защиты от электрохимической и химической коррозии являются использование вместо корродирующих металлов нержавеющей стали, химически стойких (кислотоупорных) и жаропрочных сплавов, защита поверхности металла специальными покрытиями, а также электрохимические и другие методы. К электрохимическим методам защиты в средах, проводящих электрический ток, можно отнести катодную защиту и способ протекторов. При катодной защите предохраняемый от разрушения металл (конструкцию) присоединяют к отрицательному полюсу источника электрической энергии. При протекторном способе к защищаемому металлу (например, подводной металлической части морских судов) присоединяют в виде листа другой, более активный металл — протектор (цинк и некоторые сплавы), который и будет разрушаться. [c.161]


    Протекторные грунты содержат в своем составе порошки металлов, имеющих в данной среде болео отрицательный потенциал, чем защищаемый металл. Такпе грунты оказывают катодное поляризующее действие. Наносят их гл. обр. на сталь. По отношению к стали протекторными металлами являются цинк, сплавы цинка с магнием, коллоидный свинец. При воздействии внешней среды протекторные порошки окисляются (корродируют), а защищаемый мета.ил (сталь) при этом катодно поляризуется до потенциала протектора, при к-ром сталь практически не ржавеет. [c.391]

    В качестве протекторов применяются тройные сплавы алюми-И1п"1 5-- 10%, цинк 5—15% и магний 75—90%. Анодная поляризация тройных сплавов незначительна. Хорошие результаты получены при соотношении поверхности сооружения и протектора 100 1. [c.178]

    Протекторная защита осуществляется присоединением к защищаемому металлу больщого листа, изготовленного из другого, более активного металла — протектора. В качестве протектора при защите стальных изделий обычно применяют цинк или сплавы на основе магния. При хорошем контакте между металлами защищаемый металл (железо) и металл протектора (например, цинк) оказывают друг на друга поляризующее действие. Согласно взаимному положению этих металлов в ряду напряжений, железо поляризуется катодно, а цинк [c.692]

    В агрессивных растворах, в морской воде, в почве применяют электрохимический метод защиты. Одной из разновидностей этого метода является метод протекторной защиты, который применяют в нейтральных средах. К стальной конструк-дии 1 присоединяют пластины из чистого цинка 2 или сплава цинка с алюминием (рис. 92). При этом образуются макро-гальванические элементы, в которых цинк (или сплав цинка) выполняет функцию анода, а конструкция, которую защищают от коррозии, становится катодом. При этом цинковые пластины (протектор) растворяются, а коррозия конструкции (катода) вследствие сдвига электродного потенциала в более отрицательную область прекращается или сильно уменьшается. Другая разновидность электрохимического метода — катодная защита. Конструкцию 1 для защиты от коррозии присоединяют к отрицательному полюсу генератора постоянного тока, положительный полюс — к куску железа 2 (рис. 93). Это сдвигает потенциал защищаемой конструкции в область более отрицательных значений, что приводит к сильному торможению коррозии. [c.376]

    Цинк, кадмий и ртуть наибольший интерес для техники представляют в виде металлов. Широко применяются сплавы цинка с медью (латунь). Цинк используют для защиты стальных изделий от коррозии. Он применяется в этих случаях как в качестве покрытия (цинкование), так и в качестве протектора. [c.55]


    Подобные вспомогательные электроды называют протекторами. Для их изготовления большей частью используют магний и его сплавы, цинк, алюминий. [c.239]

    Защита металлов электрохимическим путем. Этот метод иначе называется протекторной защитой или электрозащитой. Для этого используют специальный анод — протектор, который готовится из металла или сплава, имеющего более отрицательный электродный потенциал, чем потенциал защищаемого металла. Протектор присоединяется к защищаемому металлу и, контактируя, они оказывают взаимное поляризующее действие. Протектор будет разрущаться от коррозии, предохраняя соответствующий защищаемый металл. В качестве протекторов чаще всего используют цинк, старые железные детали, магниевые сплавы и т. д. Обычно протекторная защита достигает своей цели в тех средах, которые хорошо проводят электрический ток. [c.239]

    Протекторная защита и электрозащита. Протекторная защита применяется в тех случаях, когда защищается конструкция (подземный трубопровод, корпус судна), находящаяся в среде электролита (морская вода, подземные, почвенные воды и т. д.). Сущность ее заключается в том, что конструкцию соединяют с протектором — более активным металлом, чем металл защищаемой конструкции. В качестве протектора при защите стальных изделий обычно используют магний, алюминий, цинк и их сплавы. В процессе коррозии протектор служит анодом и разрушается, тем самым предохраняя от разрушения конструкцию (рис. 69). По мере разрушения протекторов их заменяют новыми. [c.254]

    Специальной разновидностью стержневых протекторов является протекторная проволока. Такая проволока выполняется из протекторного сплава с сердечником из железа или алюминия (если протектором является цинк). Такую проволоку обычно получают прессованием экструдированием) и поставляют в больших длинах. Наружный диаметр обычно составляет 5—25 мм, сердечник проволоки может иметь диаметр [c.194]

    Для изготовления протекторов применяются главным образом магний, алюминий, цинк (табл. 73). На основе этих металлов готовят магниевые, алюминиевые и цинковые сплавы. В качестве активатора для магниевых и цинковых протекторов широко используется смесь сернокислых солей магния или натрия с сернокислым кальцием и глиной. Состав активаторов дан в табл. 74. [c.141]

    Необходимо отметить, что скорость растворения протектора при циклическом деформировании образцов примерно в 10 раз выше, чем в том случае, если к детали не приложены нагрузки [20]. В качестве материала протектора можно использовать любой металл, который имеет электродный потенциал более отрицательный, чем защищаемая деталь, однако чаще всего для углеродистых сталей применяют цинк, магний, алюминий или их сплавы. [c.197]

    В качестве материала для анодов применяют алюминий, магний, цинк (металлы более электроотрицательные, чем защищаемый). На основе указанных металлов для протекторов изготовляют специальные сплавы, состав которых оказывает существенное влияние на эффективность защиты. Наибольшее распространение имеют магниевые аноды из специального сплава магния с алюминием и цинком (табл. 6-37). [c.378]

    Цинк используется для защиты стали от атмосферной коррозии. Применяется для получения медных, никелевых, магниевых сплавов, в производстве аккумуляторов и как протектор при электрохимической защите железных сплавов. [c.218]

    Для изготовления протекторов используются главным образом цинк и цинксодержащие сплавы. Анодная поляризуемость цинка сравнительно мала. Применение протекторов-анодов из чистого цинка (99,99% 2п) в загрязненной морской воде менее целесообразно, чем из цинковых сплавов (содержащих, например, 98,5% 2п). Это связано с тем, что в загрязненной морской воде собственная коррозия чистого цинка значительно выше, чем цинковых сплавов сплавы корродируют гораздо мед-.леннее, покрываясь слоем нерастворимых продуктов коррозии. Присутствие РЬ и Ре в техническом цинке нежелательно и не должно превышать 14 мг/кг, так как эти металлы анодно поляризуют цинк. [c.96]

    Длительные испытания стальных водозаборных сооружений промышленных систем охлаждения с протекторной защитой от коррозии в морской воде позволили сделать ряд выводов относительно эффективности применения некоторых материалов, используемых в качестве протекторов. Исследовались цинк (99,99% 2п) и сплавы 2п-Сй (5%) Zп-Mg (0,25%) Zn- g (1,0%) 2п-А1 (0,8%) с добавкой (-<15 мг/кг) 2п-А1 (0,1 — 0,2%)-Сс1 (0,04—0,09%) с добавкой Ре (<14 мг/кг) 2п-Н (0,3%) Zn-Hg (0,3%)-А1 (0,18%). Начальное значение pH морской воды составляло 8,2 в процессе эксплуатации в зоне действия протекторов значение pH понижалось вплоть до 6,6. [c.96]

    Из сопоставления основных свойств магния, алюминия и цинка в свете требований, предъявляемых к протекторной установке, очевидно, что более эффективными материалами по количеству получаемой электроэнергии на единицу веса будут алюминий и магний, причем по величине создаваемой электродвижущей силы следует отдать предпочтение магнию. Вместе с тем магний обладает высокой собственной скоростью коррозии и с этой точки зрения он будет менее эффективным, чем цинк и алюминий. Снижение собственной скорости коррозии протекторов может быть обеспечено двумя путями повышением их химической чистоты, т. е. уменьшением количества растворенных в них вредных примесей (железа, никеля, меди), или созданием специальных сплавов, более эффективных, чем исходные металлы. [c.212]


    Большая часть цинка идет на покрытие (цинкование) стальных изделий для защиты их от коррозии. Такие покрытия создаются погружением в расплавленный металл (горячее цинкование) или же гальваническим путем. Из цинка делают протекторы для защиты железа (стали) и других более электроположительных металлов от коррозии в морской воде, почвах и т. п., а также электроды гальванических элементов. Цинк входит в состав многих сплавов. Наиболее известна латунь — сплав Хп с Си (до 40% 2п). [c.234]

    СТИНЫ. Выяснилось, что эффективность ЦинкобЫХ протекторов быстро падает из-за образования корки 2п(0Н)г. Такая корка изолирует протектор от электролита, и его защитное действие прекращается. Сейчас применяют в качестве протектора тройные сплавы алюминий 5—10%, цинк 5—15% и магний 75—90%- Анодная поляризация тройных сплавов незначительна. Особенно широко применяют протекторы на Каспийском море при защите оснований нефтяных вышек. Хорошие результаты получены при соотношении поверхности сооружения и протектора 100 1. [c.179]

    Известно применение протекторов из сплавов на магниевой, алюминиевой и цинковой основах. Изысканию цинковых протекторных сплавов уделялось и продолжает уделяться наибольшее внимание благодаря его перспективным высоким электрохимическим характеристикам коэффициент полезного использования (к.п.и) может достигать 100%, а значение электроотрицательного потенциала при поляризации может быть достигнуто равным 700—800 мв . Не менее важна такая особенность цинка, как его искробезопасность, поэтому в настоящее время цинк является единственным протекторным материалом, рекомендуемым для создания взрывопожаробезопасных систем протекторной защиты внутренней поверхности грузовых балластируемых танков нефтеналивных судов. [c.23]

    Цинковые сплавы. Цинк по сравнению с магнием обладает более электроположительным потенциалом и меньшим электрохимическим эквивалентом. Для изготовления протекторов рекомендуется сплав Ц-0. При работе без заполнителя на поверхности цинка образуются нерастворимые карбонаты, снижающие токоотдачу протекторов. Цинковые протекторы применяются в небольших количествах для защиты подземных газопроводов на переходах через водные преграды. [c.78]

    Метод протекторов осуществляется присоединением к защищаемому металлу большого листа, изготовленного из другого, более активного металла — протектора. В качестве протектора при защите стальных изделий обычно применяют цинк или сплавы иа o uoue магния. При хорошем контакте между металлами защищаемый металл (железо) и металл протектора (например, цинк) оказывают друг на друга поляризующее действие. Согласно взаимному положению этих металлов в ряду напряжений, железо поляризуется катодно, а п,инк — анодно, В результате этого на железе идет процесс восстановления того окислителя, когорый присутствует в воде (обычно растпоренный кисло )од), а цинк окисляется. [c.560]

    В сочетании с электрохимической катодной заш,итой, которая весьма экономична в комбинации с высококачественным защитным покрытием. Электрохимическая катодная защита осуществляется в двух вариантах а) с использованием внешних источников тока (аккумуляторных батарей, селеновых выпрямителей, генераторов постоянного тока) б) с применением протекторов из металлов с электродным потенциалом более отрицательным, чем у стали (магний, цинк, алюминий или их сплавы). [c.394]

    Для протекторов при защите подземных сооружений часто используют магний. Чистые металлы - магний, алюминий, цинк - не получили практического применения для изготовления протекторов, так как магний имеет сравнительно низкую токоотдачу, а алюминий и цинк склонны к пассивации. Введение добавок позволяет получить сплавы с более отрицательными, чем у основного металла, потенциалами, которые могут оставаться активными, равномерно разрушаться. В магниевые сплавы для протекторов вводят добавки алюминия, цинка и марганца. Алюминий улучшает литейные свойства сплава и повышает механические характеристики, но при этом немного снижается потенциал. Цинк облагораживает сплав и уменьшает вредное влияние таких примесей, как медь и никель, позволяя повышать их критическое содержание в сплаве. Марганец вводят в сплав для осаждения примесей железа. Кроме того, он повышает токоотдачу и делает более отрицательным потенциал протектора. Основные загрязняющие примеси в сплаве - железо, медь,, никель, кремний, увеличивающие самокоррозию протекторов и снижающие срок их службы. [c.158]

    Протекторная защита заключается в образовании макрогальвани-ческой пары, в которой защищаемый металл играет роль катодного участка, а анодом (протектором) служит более активный металл или сплав. Обычно в качестве протектора используют металлы с низким потенциалом алюминий, магний, цинк, их сплавы. Протекторы наклепывают или соединяют металлическим проводом с защищаемой конструкцией. Эффективность протекторной защиты зависит от электропроводности среды, разности потенциалов между протекторами и защищаемой конструкцией и от способа размещения протекторов. [c.227]

    Применение металлов подгруппы цинка и их соединений. Большое количество цинка и кадмия расходуется на покрытие изделий из черных металлов в целях защиты их от коррозии. Для этого применяют электрохимические и химические методы. Эти покрытия анодные. Цинк применяется в производстве цинково-угольных элементов (Лекланше), сплавов с медью (латунь, томпак) и как протектор. Кадмий — один из компонентов легкоплавких сплавов (сплавы Вуда, Розе и др.). Его используют как поглотитель нейтронов в регулировании работы ядерных реакторов. Из кадмия готовят электроды щелочных аккумуляторов. Металлическая ртуть применяется для изготовления различных приборов вакуумных манометров и насосов, выпрямителей, ртутных кварцевых ламп, барометров, термометров и т. д. Очищают ртуть фильтрованием через бумагу или замшу и, пропуская ее в виде мелких капель через колонку с раствором нитрата ртути (I), подкисленным азотной кислотой, а также перегоняя в вакууме. [c.364]

    Катодно - протекторная защита Материалом протекторов обычно является цинк, магниевые сплавы, алюминиевоцинковые сплавы. Металл протектора выбирают с учетом техникоэкономических показателей. Так, расход металла протектора на 1А в год составляет 5,9 кг - для алюминия 6,7 кг - для цинка. [c.70]

    Протекторная эащита. Принцип защиты катодной поляризацией с помощью протекторов состоит в образовании гальванической пары, катодом в которой служит защищаемое сооружение, а анодом — протектор (рис. 32). Металл протектора должен иметь электродный потенциал, более отрицательный, чем электродный потенциал защищаемого металла. Так, по отношению к железу или его сплавам, имеющим электродный потенциал около минус 0,44 В по водородному электроду, в качестве протекторов можно использовать магний, обладающий электродным потенциалом минус 2,37 В, алюминий — минус 1,66 В, цинк — ми- ус 0,76 В. При протекторной защите разрушается протектор. [c.77]

    Несмотря на низкое движущее напряжение около 0,2 В, цинковые протекторы в настоящее время еще составляют около 90 % всех видов протекторов для наружной защиты морских судов [15]. В военно-морском флоте ФРГ для наружной защиты судов протекторами обязательно предписывается применять цинк [6]. Для внутренней защиты сменных танков в танкерах цинковые сплавы являются единственным материалом протекторов, допускаемым без ограничений [16] (см. также раздел 18.4). Для наружной защиты трубопроводов в морской воде применяют цинковые протекторы в виде браслетов, приваренных в продольном направлении к скобам, соединенным с трубой, или в виде насан<енных полуоболочек (см. раздел 17.2.3). В случае солоноватых или сильно соленых вод, получаемых, например, при добыче нефти или в горном деле, цинковые протекторы применяют и для внутренней защиты резервуаров (см. раздел 20). Возможности применения цинковых протекторов в пресной воде весьма ограничены. При низкой электропроводности среды стационарный потенциал и поляризация с течением времени обычно значительно повышаются. Это относится и к применению в грунте. Если не считать эпизодического применения стержневых и ленточных протекторов в качестве заземлителей, цинковые протекторы используют только при сопротивлении грунта менее 10 Ом-м. Чтобы уменьшить пассивируемость и снизить сопротивление растеканию тока, протекторы должны укладываться с обмазкой активатора — см. раздел 7.2.5. [c.182]

    Протекторная защита проще и дешевле катодной, поскольку не требует источника постоянного тока. В качестве протекторов используются цинк, магний, магниевые сплавы МЛ4, МЛ-5, а также алюминиевоцинковые сплавы. [c.116]

    Для протекторов при защите подземных сооружений часто используют магний. Чистые металлы - магний, алюминий, цинк, -не получили практического применения для изготовления протекторов, так как магний имеет сравнительно низкую токоотдачу, а алюминий и цинк склонны к пассивации. Введение добавок позволяет получить сплавы с более отрицательными, чем у основного металла. [c.79]

    Алюминий. Промышленность уже много лет производит алюминиевые протекторы, однако лишь в последние годы они начали широко применяться для защиты конструкций в морской воде. Первым алюминиевым сплавом для этих целей был A13Zn (3 % Zn). Современные протекторы изготавливают из тройных сплавов алюминий—цинк—олово и алюминий—цинк—ртуть. Характеристики алюминиевых протекторов приведены в табл. 70. [c.173]

    Материалом для изготовления протекторов в случае защиты изделий из стали часто служ1ит цинк, но применяются также сплавы на основе алюминия и магния. [c.87]


Смотреть страницы где упоминается термин Протекторы цинк и его сплавы: [c.238]    [c.301]    [c.222]    [c.264]    [c.283]    [c.80]    [c.79]    [c.80]    [c.198]    [c.295]    [c.168]   
Теория коррозии и коррозионно-стойкие конструкционные сплавы (1986) -- [ c.295 ]




ПОИСК





Смотрите так же термины и статьи:

Протекторы



© 2025 chem21.info Реклама на сайте