Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поляризуемость анодная и катод

    Катодная защита внешним током - защита металла, производимая с помощью постоянного тока от внешнего источника, при которой защищаемый металл присоединяется к отрицательному полюсу (т. е. в качестве катода), а к положительному полюсу - дополнительный электрод (заземление), поляризуемый при этом анодно. Катодная защита внешним током в настоящее время широко применяется как дополнительное средство (к изолирующему покрытию) защиты от коррозии подземных металлических сооружений - трубопроводов и резервуаров [2, 3, 4, 5]. [c.11]


    В целях интенсификации процесса полирования и улучшения качества обработки применяется биполярный способ обработки труб. Для полирования таким способом внутренней поверхности трубы деталь помещают внутри цилиндрической камеры, поляризуемой анодно во внутрь трубы помещают катод. Межэлектрод-ные пространства заполняются проточным электролитом. При этом внутренняя поверхность трубы поляризуется анодно, а наружная — катодно. [c.60]

    Таким образом k p, э тем больше, чем больше анодная поляризуемость металла и чем меньше катодная поляризуемость Р,(. В частности, если а —> 90°, то tg а оо, а k p. э—> 1 (что отвечает пассивности анода, когда анодная поляризация ее не нарушает), и наоборот если р —> 90°, то tg р оо, а / р. а О (что отвечает диффузионному режиму работы катода). [c.292]

    Таким образом к з. э тем больше, чем больше катодная поляризуемость металла Я и чем меньше анодная поляризуемость Р . В частности, если р —> 90°, то tg Р — оо, а э — 1 (что отвечает диффузионному режиму работы катода), и наоборот, если а —> 90°, [c.295]

    При снятии потенциостатических кривых используют те же электролитические ячейки, которые применяют при изучении кинетики электрохимических процессов другими методами. Однако в некоторых случаях требуется применение специальных ячеек. Например, при использовании классического потенциостата ячейка должна иметь малое сопротивление и малую поляризуемость вспомогательного электрода, что и определяет ее конструкцию. На рис. 32 представлен один из возможных вариантов подобной электролитической ячейки, показывающий расположение анода и катода. Характерная особенность этой ячейки — малое расстояние между катодом и анодом и большая поверхность катода. Если потенциостат может работать только при небольших сопротивлениях электролитической ванны, то приходится отказываться от разделения катодного и анодного пространства. [c.53]

    При большой анодной поляризации распределение тока будет более равномерным как на аноде, так и на катоде. Однако такая зависимость возможна лишь при определенных геометрических параметрах, когда анод расположен очень близко к катоду. При достаточно большом удалении катода от анода, как это обычно бывает на практике, эффект влияния поляризуемости анода на катодное распределение тока очень мал. [c.360]

    Потенциометрическое титрование при постоянном токе с одним поляризуемым электродом. Установка для измерения, как и в хронопотенциометрии (разд. 4.3.3), состоит из стабилизированного источника напряжения, высокоомного сопротивления, гальванометра и измерительной ячейки. Разность потенциалов замеряют при помощи усилителя или лампового вольтметра. Определение точки эквивалентности и описание процесса титрования лучше всего проводить путем построения кривой ток — потенциал. Так как в этом методе применяют электрод сравнения (разд. 4.3.4.1), представляют интерес только либо анодные, либо катодные кривые I — Ев зависимости от того, поляризуется анод или катод. [c.142]


    Исходя из электрохимического механизма коррозии, согласно которому коррозионный процесс является следствием 2 сопряженных реакций — анодной (собственно растворения металла) и катодной (ассимиляции электронов деполяризатором), можно представить следующие возможные пути торможения коррозионного процесса ингибиторами 1) увеличение поляризуемости катодного парциального процесса <катодиые ингибиторы) 2) увеличение поляризуемости анодного парциального процесса (анодные ингибиторы) 3) увеличение поляризуемости обоих электродных процессов (смешанные ингибиторы). [c.19]

    Потенциал идеально поляризуемого электрода не зависит от ка-кой-либо электрохимической реакции и может принимать в области идеальной поляризуемости любое значение, определяемое прикладываемым извне напряжением. Теоретически эта область должна быть ограничена напряжением разложения растворителя, т.е. таким напряжением, которое необходимо для электролитической диссоциации растворителя на паре инертных электродов. Для воды это напряжение составляет 1,23 В при 25°С. Если к паре платиновых электродов в водном растворе (например, серной кислоты) приложить разность потенциалов, превышающую 1,23 В, вода начнет разлагаться с выделением кислорода на аноде и водорода на катоде. Однако на многих металлах скорость выделения водорода чрезвычайно мала. По этой причине эффективная область идеальной поляризуемости ртутного электрода простирается вплоть до потенциалов, примерно на 1В отрицательнее потенциала выделения водорода. Область положительной поляризации ртути ограничена не выделением кислорода, а анодным окислением металла с образованием либо ионов ртути(I) (как в растворах нитратов), либо нерастворимых солей ртути(1) (как в растворах хлоридов). В некоторых растворах полный диапазон идеальной поляризуемости ртутного электрода превышает 2 В. Такой электрод, конечно, не является полностью идеально поляризуемым, так как при потенциалах более отрицательных, чем обратимый водородный потенциал, будет наблюдаться выделение водорода, хотя и медленное. Кроме того, различные примеси, от которых невозможно полностью избавиться, в особенности кислород, реагируя на электроде, создают электрический ток. Впрочем, практически ртутный электрод можно считать идеально поляризуемым во многих растворах электролитов. [c.52]

    Очевидно, что в тех случаях, когда поляризуемость катода на участке возможного пересечения катодной кривой с анодной невелика (пологий ход катодной кривой), что характерно для активационного контроля катодного процесса, более вероятно, что пассивное или активное состояние системы будет определяться значением потенциала пассивирования Еа- [c.83]

    Уравнению (26) соответствуют кривые и 2, изображенные на рис. 8. Из этих кривых следует, что присоединение к катоду, работающему в условиях чисто диффузионного режима, любого анода, не выводящего потенциал системы за пределы величин, укладывающихся на вертикальной части кривой (участок АВ), приводит к появлению одного и того же тока. Иными словами, ток подобных контактных пар определяется лишь величиной предельного диффузионного тока по кислороду и не зависит от природы и поляризуемости анода. Ток таких элементов должен сильно зависеть от интенсивности размешивания электролита (ср. кривые концентрационной поляризации к и 2). Когда же система приобретает потенциал, выходящий за пределы указанных выше границ, контактный ток должен зависеть как от скорости протекания самой электрохимической реакции, так и от скорости доставки деполяризатора к электроду и отвода продуктов анодной реакции. Степень влияния того или иного фактора, как будет показано ниже, зависит от скорости размешивания электролита. [c.45]

    Из диаграммы можно также сделать вывод, что чем сильнее поляризуется электрод в данной системе, тем слабее его влияние на другие электроды многоэлектродной системы. Факторы, способствующие уменьшению катодной поляризации, например введение в раствор легко восстанавливающихся окислителей, повышение концентрации водородных ионов, перемешивание электролита, увеличение площади катодов, усиливают роль наиболее электроположительных членов многоэлектродной системы, способствуя переводу. промежуточных электродов в аноды. Уменьшение поляризуемости сильных анодов, увеличение их площади или введение в систему более электроотрицательного анода, наоборот, способствует переводу промежуточных электродов в катоды. Увеличение анодной поляризуемости наиболее электроотрицательных металлов системы может привести к тому, что металлы, работавшие раньше в качестве катодов, начнут функционировать в качестве анодов. [c.71]

    Применительно к конструкции, содержащей щели, в которых металл является анодом, это означает, что защита будет достигнута в том случае, когда потенциал всей конструкции достигнет такого значения, которое устанавливается в щели в отсутствии поляризации. Учитывая, что анодное растворение в щели протекает в условиях, когда металл находится по существу в активном состоянии, а катодная поверхность составляет основную часть системы (поляризуемость катода невелика), электрохимическая защита может потребовать больших токов. Поэтому при осуществлении электрохимической защиты металла, находящегося в щели, приходится, кроме обычной задачи определения защитного потенциала, для данных условий решать и такие вопросы, как распределение тока между открытой поверхностью и щелью, распределение потенциала по глубине зазора и т. д. В определенных условиях (плохо проводящие среды, узкие зазоры) может оказаться, что ответвляемого тока будет недостаточно для сдвига потенциала в желаемом направлении. [c.269]


    Анализ формулы показывает, что коррозионный ток пары на единицу площади анодного металла (/ д = 1) будет тем выше, чем больше начальная разность потенциалов коррозии контактируемых металлов в данной среде Ек— д ). чем меньше поляризуемость электродов Рк и / д и омическое сопротивление коррозионной пары Я, чем больше площадь катода Ек- Таким образом, могут возникнуть очень опасные контакты, приводящие к быстрой коррозии анода пары и менее опасные контакты, где ускорение коррозии анода может быть не существенным. [c.79]

    Яд — потенциал коррозии анода, и —то же, для катода К1—К5 — катодные кривые для все более эффективных катодных процессов или все увеличивающихся относительных площадей катода А[—A — анодные кривые при возрастании поляризуемости в активном состоянии АВ — переход в пассивное состояние СО — перепассивация [c.80]

    К — электрод, поляризуемый катодно А — электрод, поляризуемый анодно НЭ — каломельные полуэлементы КВ — клеммы для присоединения катодного вольтметра НЭ — нормальный элемент Вестона М — мешалка с гидравлическим затвором Г — шлифы с кранами для ввода газов П — отбор проб электролита Пх — переключатель для включения катодного вольтмет ра в цепь катода пли анода и Я-, — переключатели для включения в измерительную схему элемента Вестона (включается при э. д. с. > 1 в) [c.137]

    Катодная защита внешним током — зашита металла от коррозии с помошью постоянного тока от внешнего источника. При этом защищаемый металл присоединяют к отрицательному полюсу внешнего источника (т. е. в качестве катода), а к положительному полюсу присоединяют дополнительный электрод, поляризуемый анодно. [c.198]

    Катодная защита внешним током — защита металла от коррозии с помощью постоянного электрического тока от внешнего источника, при которой защищаемый металл присоединяют к отрицательному полюсу внещнего источника постоянного тока (т. е. в качестве катода), а к положительному полюсу присоединяют дополнительный электрод, поляризуемый анодно. При таком пропускании тока поверхность защищаемого металла поляризуется катодно ее потенциал при этом смещается в отрицательную сторону, что приводит к ослаблению работы локальных анодов или к их превращению в катоды, т. е. к уменьшению или полному прекращению коррозионного разрушения. Анодный процесс при этом протекает на дополнительном электроде—аноде. Для полного прекращения электрохимической коррозии металла его нужно катодно заполяризо-вать до значения обратимого потенциала ( Vме)обр, а сплав — до значения обратимого потенциала его наиболее отрицательной анодной составляющей. Катодную защиту внешним током щироко применяют как дополнительное (к изолирующему покрытию), а иногда и как самостоятельное средство защиты от коррозии подземных металлических сооружений — трубопрово- [c.241]

    Для металлических объектов малой протяженности, например, в отношении исследуемых на почвенную коррозию небольших образцов, почву около них можно принять однотипной, а доступ кислорода — достаточно равномерным со всех сторон, В этом случае коррозионная активность почвы должна рассматриваться в основном в отношении работы микрокоррозионных пар. Она не будет зависеть от удельного электросопротивления -почвы и будет определяться катодными и анодными поляризационными характеристиками. Определение коррозионной активности почвы в отношении железной конструкции в этих условиях может быть приближенно сделано на основании анализа поляризуемостей железного катода и анода в данной [c.141]

    В противном случае, т. е. если омическое наденне напряжения не равно нулю, скорость коррозии будет не а некоторой меньшей вел1 чиной /кор- В этих условиях омическое падение напряжения Д<В ом численно равно длине отрезка аЬ (см. рис. 24.4). Потенциал анода в процессе коррозии будет от рицательнее потенциала катода на величину Д ом. Таким образом, скорость коррозии является функцией разности обратимых потеН циалов анодной и катодной реакцик, их поляризуемости и омического сопротивления коррозионной с )еды. Влияние каждого из этих факторов на скорость коррозии показано на рис. 24.5 при помощи упрощенных коррозионных диаграмм. Скорость коррозии уменьша ется, если и1)и заданном сопротивлении и неизменной поляризуемо< сти электродов обратимые потенциалы анодной и катодной реак ций сближаются (рис. 24.5, а), т. е изменяется параллельно [c.497]

    Затрудненность доставки в щель окислителя— катодного деполяризатора (которая в достаточно узких щелях может быть чисто диффузионной), затрудняет протекание катодного процесса, увеличивая его поляризуемость. Уменьшение pH среды за счет гидролиза продуктов коррозии облегчает протекание анодного процесса, уменьшая его поляризуемость (облегчая ионизацию металла и затрудняя образование защитных пленок), что приводит к усиленной работе макропары металл в щели (анод) —металл открытой поверхности (катод). [c.415]

    На рис. 21 представлена диаграмма коррозиониого процесса при линейной зависимости поляризации катода и анода от силы тока. Поляризуемость электрода определяется тангенсом угла наклона касательной в данной точке поляризационной кривой. В данном случае тангенсы углов наклона катодной и анодной прямых будут обозначать соответственно пплярнзлцпопные сопротивле1п-1я катода = tg а и анода Р -- ( . [c.53]

    Эффективность электрохимической защиты двухэлектродной системы можно установить, пользуясь поляризационной диаграммой коррозии, приведенной на рис, 200. Пусть анодная кривая— кривая Е В, а катодная — Е°С. Точка пересечения этнх кривых О указывает нам силу коррозионного тока кор и стационарный потенциал Е , который устанавливается на обоих электродах рассматриваемой системы. Если вся система будет запо-ляризована до более отрицательного потенциала, например до Ей то сила тока на аноде уменьшится до значения /ь Анодный ток (ток коррозии) в нашем элементе полностью прекратится, если система будет заполяризована до потенциала Е . В процессе катодной поляризации поляризующий ток идет, с одной стороны, на подавление анодного тока (т. е. непосредственно иа защиту от коррозии), а с другой, — на поляризацию катода от потенциала Ех до потенциала Е . Поэтому сила поляризующего тока, как правило, должна быть больше достигаемого защитного эффекта. Сила защитного тока должна быть тем больше, чем больше катодная поверхность и чем меньше поляризуемость катода, Это значит, что при малой поляризуемости катода требуется очень большая сила тока. [c.300]

    Для снятия кривых применяется ячейка Н-образной формы (рис. 123). Пористая перегородка (шоттовский фильтр) разделяет анодное и катодное пространства и тем самым предупреждает попадание продуктов анодной реакции к катоду. Оба электрода изготовлены и 1 меди и армированы в пластмассу. Каждый из них в ячейке выполняет двоякую функцию является поляризуемым и вспомогательным поляризующим. Вследствие этого создается возможность обе кривые получить одновременно. [c.219]

    Поскольку в элементе электрод с покрытием является катодом, то весь поляризационный эффект следует отнести к катодному процессу (анодная поляризуемость стального электрода без покрытия в Na l ничтожна). [c.137]

    Для пассивации корродирующего металла и поддержания его в пассивном состоянии, помимо анодной поляризации от внешнего источника напряжения, может быть использовано контактирование его с более электроположительным электродом (катодом), который в данном случае называют катодным протектором. Основная роль катодного протектора также состоит в смешении потенциала защищаемого металла (анода) в пассивную область — положительнее потенциала его пассивации в данной среде. Это условие выполнимо в том случае, если стационарный потенциал протектора (или устанавливающийся на нем окислительно-восстановительный потенциал среды) положительнее потенциала пас-ивации металла, если катодная поляризуемость материала протек- [c.153]

    В более общем случае все ступени в меру их кинетического сопротивления, определяемого падением потенциала на данной ступени, принимают участие в установлении общей скорости коррозионного процесса. Количественное соотношение между основными контролирующими факторами электрохимической коррозии может быть определено на основании изучения кинетики электродных (анодных и катодных) реакций в условиях протекания коррозии и построения соответствующих коррозионных диаграмм (рис.9). Здесьи Е Х— соответственно анодная и катодная поляризационные кривые, т. е. зависимости потенциала анода или катода от величины коррозионного тока. Соотношение (Б — P /кop=igФ представляет собой общую поляризуемость или общее торможение протеканию данного коррозионного процесса (вомическом выражении). Аналогично этому А А /кор=1ёа и A -/ op=tgр представляют собой среднюю анодную и соответственно катодную поляризуемость (торможение). Омическое сопротивление протекания коррозионного процесса определяется величиной tgY. [c.41]

    Это изменение приводит к снижению силы коррозионного тока, к уменьшению скорости коррозии. Явление, препятствующее поляризуемости электродов и, следовательно, увеличивающее скорость коррозионного процесса, называется деполяризацией. Так как при анодном процессе происходит сдвиг потенциала в сторону положительн.ых значений, то повышение потенциала анода характеризует анодную поляризацию, а понижение потенциала катода (изменение в сторону отрицательных значений)—-катодную поляризацию. [c.35]


Смотреть страницы где упоминается термин Поляризуемость анодная и катод: [c.63]    [c.156]    [c.347]    [c.385]    [c.204]    [c.44]    [c.142]    [c.143]    [c.159]    [c.108]    [c.29]    [c.165]    [c.166]    [c.134]    [c.108]   
Теория коррозии и коррозионно-стойкие конструкционные сплавы (1986) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Катод

Поляризуемость

Ток анодный



© 2025 chem21.info Реклама на сайте