Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сплавы протекторные

    При получении покрытия из расплава в ванну с расплавленным алюминием обычно добавляют кремний, чтобы затруднить образование слоя хрупкого сплава. Полученные из расплава покрытия используют для повышения устойчивости к окислению при умеренных температурах таких изделий, как отопительные устройства и выхлопные трубы автомобилей. Они стойки к действию температуры до 480 °С. При еще более высоких температурах покрытия становятся огнеупорными, но сохраняют защитные свойства вплоть до 680 °С [21]. Использование алюминиевых покрытий для защиты от атмосферной коррозии ограничено вследствие более высокой стоимости по сравнению с цинковыми, а также из-за непостоянства эксплуатационных характеристик. В мягкой воде потенциал алюминия положителен по отношению к стали, поэтому покрытие является коррозионностойким, В морской и некоторых видах пресной воды, особенно содержащих С1" и SO4", потенциал алюминия становится более отрицательным и может произойти перемена полярности пары алюминий—железо. В этих условиях алюминиевое покрытие является протекторным и катодно защищает сталь. Показано, что покрытие из сплава А1—Zn, состоящего из 44 % Zn, 1,5 % Si, остальное — Al, имеет очень высокую стойкость в морской и промышленной атмосферах. Оно защищает также от окисления при повышенных температурах. [c.242]


    Чистый алюминий мягок и непрочен. Легируют его в основном для повышения прочности. Для того чтобы можно было воспользоваться высокой коррозионной стойкостью чистого алюминия, высокопрочные сплавы покрывают слоем чистого алюминия или более коррозионностойкого сплава (например, сплава Мп—А1 с 1 % Мп), который более электроотрицателен в ряду напряжений, чем основной металл. Наружный слой называют плакирующим, а сам двухслойный металл — алькледом. Плакирующий металл катодно защищает основу, выполняя функцию протекторного покрытия. Его действие аналогично действию цинкового покрытия на стали. Помимо катодной защиты от питтинга покрытие из менее благородного металла защищает также от межкристаллитной коррозии и коррозионного растрескивания под напряжением (КРН). Это особенно важно, когда основной высокопрочный сплав приобретает склонность к этим видам коррозии в процессе производства или при случайном нагреве до высокой температуры. [c.342]

    Магниевый электрод типа ПМ (табл. 7.1) представляет собой удлиненный профиль Д-образного сечения, в который при отливке вставляется стальной сердечник. Вокруг сердечника в магниевом электроде имеется углубление в виде воронки. После соединения контактов воронка заполняется битумной мастикой с целью предотвращения контактной коррозии. Потенциал протектор - грунт для этих сплавов равен -1,6 В по медно-сульфатному электроду сравнения (при разомкнутой цепи протекторной установки). При анодной плотности тока 10 мА/м к.п.д. протекторов находится в пределах от 0,52-0,66. [c.160]

    В основе протекторной защиты (рис. У.8) лежит специально созданная гальваническая пара с катодом из какого-либо металла. Электродный потенциал последнего отрицательнее электродного потенциала самого химически активного компонента сплава, из которого изготовлено защищаемое от коррозии изделие. Анодом в такой гальванической паре выступает защищаемое изделие, точнее — самый пассивный компонент сплава, из которого изготовлено это изделие. При соприкосновении такой гальванической пары с растворителем (или раствором электролита) корродировать будет лишь материал протектора, обеспечивая тем самым сохранность защищаемого изделия. [c.259]

    Протекторная защита осуществляется присоединением к защищаемому металлу больщого листа, изготовленного из другого, более активного металла — протектора. В качестве протектора при защите стальных изделий обычно применяют цинк или сплавы на основе магния. При хорошем контакте между металлами защищаемый металл (железо) и металл протектора (например, цинк) оказывают друг на друга поляризующее действие. Согласно взаимному положению этих металлов в ряду напряжений, железо поляризуется катодно, а цинк [c.692]


    В агрессивных растворах, в морской воде, в почве применяют электрохимический метод защиты. Одной из разновидностей этого метода является метод протекторной защиты, который применяют в нейтральных средах. К стальной конструк-дии 1 присоединяют пластины из чистого цинка 2 или сплава цинка с алюминием (рис. 92). При этом образуются макро-гальванические элементы, в которых цинк (или сплав цинка) выполняет функцию анода, а конструкция, которую защищают от коррозии, становится катодом. При этом цинковые пластины (протектор) растворяются, а коррозия конструкции (катода) вследствие сдвига электродного потенциала в более отрицательную область прекращается или сильно уменьшается. Другая разновидность электрохимического метода — катодная защита. Конструкцию 1 для защиты от коррозии присоединяют к отрицательному полюсу генератора постоянного тока, положительный полюс — к куску железа 2 (рис. 93). Это сдвигает потенциал защищаемой конструкции в область более отрицательных значений, что приводит к сильному торможению коррозии. [c.376]

    Борьба с коррозией (электрохимическим и химическим разрушением металлов и сплавов) — проблема особой важности. Важнейшими методами защиты от электрохимической и химической коррозии являются использование вместо корродирующих металлов нержавеющей стали, химически стойких (кислотоупорных) и жаропрочных сплавов, защита поверхности металла специальными покрытиями, а также электрохимические и другие методы. К электрохимическим методам защиты в средах, проводящих электрический ток, можно отнести катодную защиту и способ протекторов. При катодной защите предохраняемый от разрушения металл (конструкцию) присоединяют к отрицательному полюсу источника электрической энергии. При протекторном способе к защищаемому металлу (например, подводной металлической части морских судов) присоединяют в виде листа другой, более активный металл — протектор (цинк и некоторые сплавы), который и будет разрушаться. [c.161]

    Защита металлов электрохимическим путем. Этот метод иначе называется протекторной защитой или электрозащитой. Для этого используют специальный анод — протектор, который готовится из металла или сплава, имеющего более отрицательный электродный потенциал, чем потенциал защищаемого металла. Протектор присоединяется к защищаемому металлу и, контактируя, они оказывают взаимное поляризующее действие. Протектор будет разрущаться от коррозии, предохраняя соответствующий защищаемый металл. В качестве протекторов чаще всего используют цинк, старые железные детали, магниевые сплавы и т. д. Обычно протекторная защита достигает своей цели в тех средах, которые хорошо проводят электрический ток. [c.239]

    В промышленности часто применяют так называемую протекторную защиту, пригодную в тех случаях, когда защищаемая конструкция (корпус судна, подземный трубопровод) находится в среде электролита (морская, почвенная вода). Для осуществления протекторной защиты используют специальный анод — протектор (например, старые железные детали, алюминиевые сплавы и т. д.) с более отрицательным потенциалом, чем потенциал металла защищаемой конструкции. [c.365]

    Методы защиты металлов от коррозии весьма разнообразны. Важнейшими из них являются защита поверхности металла покрытиями, создание сплавов с антикоррозионными свойствами, электрохимические методы (протекторная защита и электрозащита), изменение состава среды. Эти методы вытекают из самой сущности коррозионных процессов. Рассмотрим их. [c.253]

    Протекторная защита и электрозащита. Протекторная защита применяется в тех случаях, когда защищается конструкция (подземный трубопровод, корпус судна), находящаяся в среде электролита (морская вода, подземные, почвенные воды и т. д.). Сущность ее заключается в том, что конструкцию соединяют с протектором — более активным металлом, чем металл защищаемой конструкции. В качестве протектора при защите стальных изделий обычно используют магний, алюминий, цинк и их сплавы. В процессе коррозии протектор служит анодом и разрушается, тем самым предохраняя от разрушения конструкцию (рис. 69). По мере разрушения протекторов их заменяют новыми. [c.254]

    В настоящее время применяют многие методы борьбы с коррозией главные из которых 1) защитные покрытия (металлические и неметаллические) 2) обработка и изменение состава среды либо состава металла (сплава) 3) электрохимические и электрические методы (протекторная защита, катодная и анодная защита). [c.472]

    Имеются также опасности при катодной и протекторной защите металла (сплава) в активном состоянии. При значительном смещении потенциала в катодную область возрастает скорость выделения водорода, что при наличии некоторых примесей или добавок в металле (сплаве) или веществ в коррозионной среде может привести к наводороживанию и охрупчиванию [43, 44]. [c.47]


    Протекторная и катодная защита основана в наложении отрицательного потенциала на поверхность металла, при котором значительно замедляется процесс его ионизации. В протекторной защите источником поляризующего тока является гальванический элемент, состоящий из защищаемой металлической конструкции и протектора, изготовленного из специального сплава, характеристика которых приведена в табл. 3. [c.11]

    Несмотря на свой отрицательный стационарный потенциал, алюминий в чистом виде непригоден как протекторный материал, поскольку он уже на воздухе приобретает плотную пассивирующую оксидную пленку. Алюминиевые сплавы для протекторов содержат активирующие [c.182]

    Скорость собственной коррозии алюминиевых протекторных сплавов и ее зависимость от токовой нагрузки и от среды колеблется в соответствии с типом легирования и химическим составом в широких пределах и всегда более высока, чем у цинковых протекторов. Кроме того, материал протектора в области литейной корки может вести себя совершенно иначе, чем в сердцевине. В особенности это относится к протекторам, содержащим олово, если температурный режим при их изготовлении не был оптимальным. У некоторых алюминиевых сплавов потенциал с течением службы становится более отрицательным, причем установившиеся значения достигаются только спустя несколько часов или даже суток. Напротив, у протекторных сплавов, содержащих [c.183]

    К протекторам специальной формы относятся в частности разнообразные их типы, применяемые для защиты небольших резервуаров. Имеются в виду водоподогреватели, теплообменники и конденсаторы. Наряду с уже упоминавшимися стержневыми протекторами с трубным резьбовым соединением, ввинчиваемыми в резервуар снаружи, применяются также короткие и круглые протекторные патрубки (штуцера) и шаровые сегменты более или менее плоской формы, свинчиваемые при помощи залитых держателей с защищаемой поверхностью. Протекторы такой формы изготовляют преимущественно пз магниевых сплавов. Кроме того, применяются звездообразные и круглые протекторы для встраивания в конденсаторы и трубы. Масса этих протекторов может колебаться от нескольких десятых долей килограмма до 1 кг. [c.194]

    Специальной разновидностью стержневых протекторов является протекторная проволока. Такая проволока выполняется из протекторного сплава с сердечником из железа или алюминия (если протектором является цинк). Такую проволоку обычно получают прессованием экструдированием) и поставляют в больших длинах. Наружный диаметр обычно составляет 5—25 мм, сердечник проволоки может иметь диаметр [c.194]

    Испытания эффективности и качества протекторов ограничиваются в основном аналитическим контролем химического состава сплава, проверкой качества и наличия покрытия на держателе, определением достаточности сцепления между держателем (креплением) и протекторным материалом и контролем соблюдения заданной массы и размеров протектора. Испытания магниевых и цинковых протекторов регламентируются нормативными документами [6, 7, 22, 28]. Аналогичных нормативов по алюминиевым протекторам не имеется. Кроме того, указываются и минимальные значения стационарного потенциала [ 16]. Нормативы по химическому составу обычно представляют собой минимальные требования, которые обычно превышаются у всех сплавов, имеющихся на рынке. К тому же регламентированные в этих документах способы мокрого химического анализа в техническом отношении за прошедшее время устарели. Протекторные снлавы в настоящее время более целесообразно исследовать методами эмиссионного спектрального анализа или атомной абсорбционной спектрометрии (по спектрам поглощения). [c.196]

    Основные научные исследования посвящены изучению коррозии металлов и металловедению. Создал (1933—1938) теоретические основы учения о коррозии металлов — теорию миогоэлектродных электрохимических систем и теорию неравновесных электрохимических потенциалов металлов. Разработал (1933—1938) классификацию методов испытаний на коррозию, предложил для этой области науки терминологию. Разработал методы защиты от коррозии алюминиевых сплавов, протекторной защиты конструкций. Создал жаропрочный [c.14]

    С агрессивными химическими средами. Она является экономически оправданной в тех случаях, когда коррозионная среда обладает достаточной электропроводностью и потери напряжения (связанные с протеканием защитного тока), а следовательно, и расход электроэнергии г равнительно невелики. К Чтодная поляризация защищаемого металла достигается либо наложением тока от внешнего источника кaтoднaя защита), либо созданием макрогальванической пары с менее благородным металлом (обычно применяются алюминий, магний, цинк и их сплавы) Он играет здесь роль анода и растворяется со скоростью, достаточной для создания в системе электрического тока необходимой силы (протекторная защита). Растворимый анод при протекторной защите часто называют жертвенным анодом . [c.504]

    Известно, что в гальванической паре разрушению от электрохимической коррозии подвергается анод. Этим обстоятельством иногда пользуются для защиты аппаратуры от коррозии. Если, например, в железный аппарат, где есть электролит, поместить цинковую пластинку, то именно она, не железная стенка аппарата, станет анодом и будет разрушаться, а железо аппарата будет со-лраняться. Если же взамен цинковой пластнши поместить никелевую, свинцовую или медную пластинку, то анодом окажется уже железо аппарата и его коррозия значительно усилится. Следовательно, подбирая гальваническую пару так, чтобы стенка аппарата была катодом, а не анодом, можно уменьшить ее электрохимическую коррозию. Такой способ защиты от коррозии называется протекторной защитой. Протекторы йзготовляют из цинка, алюминия, магния и сплавов, анодных по отношению к стали. Протекторная защита проста в эксплуатации и не требует постоянного обслуживания. [c.175]

    Протектор изготовляют из цветных металлов цинка, алюминия, магпия и их сплавов. Для уменьшения переходного сопротивления и повышения эффективности защиты протектор устанавливают в заполнитель — активатор, приготовленный из смеси сернокислых солей, глины и воды. Преимущества протекторной системы заключаются в простоте, дешевизне, возможности оставлять ее без постоянного обслуживания, ограничиваясь проверками I заменой протектора. Недостатки — некоторая нестабильность защитного тока (обусловлена некоторой пассивацией протектора) и относительно малый срок службы протекторов. [c.285]

    В растворе, насыщенном H S и содержащем 5 % Na l и 0,1 % уксусной кислоты (имитация кислой среды газовых скважин), разрушение сплава зависит от температуры и скорости равномерной коррозии, которая преобладает в этих условиях и приводит к образованию водорода. При комнатной температуре разрушение вследствие водородного растрескивания (называемого иногда также сульфидным растрескиванием) протекает обычно только в том случае, если обработанные холодным способом сплавы были подвергнуты последующей термической обработке (состарены на заводе-изготовителе). Старение сплавов, увеличивающее их прочность, может приводить также к усилению равномерной коррозии в кислотах. При этом количество выделяющегося водорода становится достаточным, чтобы вызвать растрескивание. При повышенной температуре разрушения этого типа обычно уменьшаются (меньше водорода проникает в металл и больше удаляется в виде газа). Однако в области повышенных температур водородное растрескивание может смениться КРН, которое связано с присутствием хлоридов. В этом случае контакт сплавов с более активными металлами предотвращает растрескивание (протекторная защита). [c.371]

    Способы защиты от коррозии металлов в морской воде заключаются в следующем а) очистке поверхности металла от окалины, ржавчины и покрытии ее лаком, этиленовыми красками, мастикой фенол-формальдегидной, каменноугольной или на битумной основе, применении фосфотирования, цинкования, оксидирования (для алюминия) б) использовании коррозионно-стойких металлов - меди и ее сплавов в) катодной и протекторной защите в комбинации с защитными покрытиями или без них г) применении ультразвуковой защиты совместно с катодной и протекторной защитой д) использовании элект-родренажной защиты. [c.43]

    К электрохгшическим методам защиты металлов относятся катодная запщ-та, протекторная защита и др. При катодной защите защищаемая конструкция или деталь присоединяется к отрицательному полюсу источника электрической энергии и становится катодом. В качестве анодов используются куски железа или специально изготовленные сплавы. При надлежащей силе тока в цепи на защищаемом изделии происходит восстановление окислителя, процесс же окисления претерпевает вещество анода. [c.692]

    Протекторная защита заключается в образовании макрогальвани-ческой пары, в которой защищаемый металл играет роль катодного участка, а анодом (протектором) служит более активный металл или сплав. Обычно в качестве протектора используют металлы с низким потенциалом алюминий, магний, цинк, их сплавы. Протекторы наклепывают или соединяют металлическим проводом с защищаемой конструкцией. Эффективность протекторной защиты зависит от электропроводности среды, разности потенциалов между протекторами и защищаемой конструкцией и от способа размещения протекторов. [c.227]

    Катодно - протекторная защита Материалом протекторов обычно является цинк, магниевые сплавы, алюминиевоцинковые сплавы. Металл протектора выбирают с учетом техникоэкономических показателей. Так, расход металла протектора на 1А в год составляет 5,9 кг - для алюминия 6,7 кг - для цинка. [c.70]

    Протекторная эащита. Принцип защиты катодной поляризацией с помощью протекторов состоит в образовании гальванической пары, катодом в которой служит защищаемое сооружение, а анодом — протектор (рис. 32). Металл протектора должен иметь электродный потенциал, более отрицательный, чем электродный потенциал защищаемого металла. Так, по отношению к железу или его сплавам, имеющим электродный потенциал около минус 0,44 В по водородному электроду, в качестве протекторов можно использовать магний, обладающий электродным потенциалом минус 2,37 В, алюминий — минус 1,66 В, цинк — ми- ус 0,76 В. При протекторной защите разрушается протектор. [c.77]

    Протекторная защита. Схема действия протекторной защиты локазана на рис. 48. Принцип ее действия основан на том, что газопроводу путем подключения к нему лро-текторов, обладающих более отрицательным потенциалом, придается отрицательный потенциал. Таким образом, участок газопровода превращается в катод без постороннего источника тока. Протектор представляет собой цилиндр из магния, алюминия, цинка и их сплавов, в центре которого расположен стальной сердечник в виде стержня или спирали. Сердечник выступает с одного или с обеих концов протектора, что дает возможность соединить их по нескольку штук. Протекторы располагаются на расстоянии до 4,5 м от газопровода. В настоящее время выпускаются протекторы типа МГА (магниевые гальванические аноды). Средний срок их службы 8—10 лет, вес 5—7 кг. [c.102]

    Если металл (сплав) находится в активном состоянии, СОСТОЯНИЙ пробоя или перепассивации, то снизить скорость коррозии можно смещением его потенциала в область более отрицательных (меньших) потенциалов. С этой цепью применяется метод катодной защиты [41, 42] или протекторная защита. Методы катодной и протекторной защиты, в частности, эффективно применяются при защиге морских соорулсений. [c.47]

    Технология легирования алюминиевых протекторных сплавов весьма сложна, потому что растворимость отдельных компонентов в основном металле ограничена. Например олово при комнатных и низких температурах растворяется в алюминии плохо. Поэтому, для того чтобы растворенное в расплаве олово присутствовало в готовом протекторе в тон-кораспределенном состоянии, нужно проводить многочасовую термическую обработку при 500—550 С с последующей закалкой. [c.183]

    Даже у эффективных магниевых сплавов и при благоприятных условиях значения не превышают 0,55—0,65. Причиной большой доли собственной коррозии является выделение водорода, образующегося по катодной параллельной реакции согласно уравнению (7.56), или же развитие свободной коррозии частиц, отделенных от протектора при сильно трещиноватой его поверхности (см. раздел 7.1.1 [2—4, 19— 21]). Магниевые протекторы изготовляют в основном из сплавов. Содержание железа и никеля не должно превышать 0,003 %, так как при этом их свойства ухудшаются. Влияние меди не является однозначным. Верхним пределом ее содержания считается 0,02 %. При добавке марганца железо выпадает из расплава и при затвердевании становится безвредным ввиду образования кристаллов железа с оболочкой из марганца. Кроме того, марганец повышает токоотдачу (выход по току) в хлоридсодержащих средах. Содержание марганца должно быть не менее 0,15 %. Алюминий облегчает удаление вредного железа благодаря выпадению вместе с марганцем. Впрочем, чувствительность к повышенным содержаниям железа (более 0,003 %) в присутствии алюминия заметно повышается. При добавке цинка коррозионное разъедание становится более равномерным, к тому же снижается чувствительность к другим загрязнениям. Важнейшим магниевым протекторным сплавом является сплав А2 63, который удовлетворяет также и требованиям стандарта военного ведомства США М1Ь-А-21412 А [22]. [c.186]

    К труднорастворимым соединениям, образующимся на магниевых протекторах при обычной токовой нагрузке, относятся гидроксид, карбонат и фосфат магния. Впрочем, растворимость гидроксида и карбоната еще сравнительно высока. Очень низкую растворимость имеет только фосфат магния. Движущее напряжение у магниевых протекторов при защите стали при не слишком малой электропроводности и> >500 мкСм-см составляет около 0,65 В, т. е. в три раза выше, чем у цинка и алюминия. Магниевые протекторные сплавы применяются преимущественно там, где движущее напряжение цинковых и алюминиевых протекторов недостаточно или где опасность пассивации слишком велика. Магниевые протекторы используют при повышенном электросопротивлении среды и для получения большей плотности защитного тока. Объектами такой защиты могут быть стальные конструкции в пресной воде, балластные танки для пресной воды, водоподогреватели и резервуары для питьевой воды. В случае резервуаров для питьевой воды важное значение имеет физиологическая безвредность продуктов коррозии (см. раздел 21.4). Здесь нельзя, например, применять алюминиевые протекторы, активированные ртутью. В грунте магниевыми протекторами можно защищать небольшие сооружения при удельном сопротивлении грунта до 250 Ом-м и более крупные резервуары и трубопроводы при сопротивлении грунта до 100 Ом-м. На объектах, имеющих органические покрытия для защиты от коррозии, в средах со сравнительно хорошей проводимостью иногда может оказаться необходимым промежуточное включение омического сопротивления для ограничения тока, чтобы не допустить повреждения покрытия слишком большим защитным током, или чтобы предотвратить установление слишком низких потенциалов (см. раздел 6). [c.188]

    Правильно сконструированные и хорощо изготовленные протекторы могут работать до полного почти израсходования используемого протекторного сплава. У протекторов худщего качества больщая или меньшая часть материала может во время службы отвалиться и поэтому перестанет давать эффект катодной защиты. По этим же соображениям необходимо обеспечить хорошее сцепление между протекторным сплавом и сердечником (держателем). Согласно техническим условиям [7], сцепление должно распространяться не менее чем на 30 % площади контакта. У высококачественных протекторов этот процент значительно выше, потому что между протекторным сплавом и держателем образуется промежуточный сплавленный слой. Чтобы облегчить формирование такого слоя, держатель должен быть тщательно очищен. Органические загрязнения удаляют в соответствующей ванне (растворителем РЗ). Ржавчину растворяют в солянокислотной травильной ванне. После промывки и сушки держатель приобретает светлую (неокисленную) металлическую поверхность и его можно сразу же заливать протекторным сплавом. Светлую поверхность держателей можно получать также дробеструйной очисткой до класса чистоты по стандарту Sa 2V2 [27] и затем сразу же заливать ее сплавом. [c.190]

    Сообщалось также и о так называемых многослойных протекторах из различных протекторных материалов [31]. Такие протекторы должны вначале давать ток больщой силы для предварительной поляризации, а затем в течение длительного времени работать с малым током при возможно большей токоотдаче (в ампер-часах). Когда такие протекторы имеют наружную оболочку из магниевого сплава и сердечник из цинка, температура плавления сердечника оказывается более низкой, чем у материала оболочки. Это соответственно усложняет технологический процесс изготовления. Однако та же цель может быть достигнута и проще при сочетании протекторов из различных материалов [132], например при использовании магниевых протекторов для предварительной поляризации и цинковых или алюминиевых протекторов для длительной защиты. [c.195]

    Если толщина слоя среды над объектом защиты уменьшается, например на дне резервуаров или в трюмах судов, то зона действия катодной защиты тоже сокращается. В таких случаях при защите горизонтальных поверхностей, особенно имеющих защитное покрытие, катодная поляризация может быть обеспечена рассеянием металлического порошка из соответствующего протекторного сплава. Такие порошки состоят из зерен цинка (крупностью 100—10 мкм) с активирующими добавками. Частицы цинка прочно спекаются с днищем и осаледаются преимущественно в углублениях, например возникших вследствие коррозии. В сочетании с уже описывавшейся протекторной проволокой таким способом можно эффективно защищать, например, днища трюмов судов (см. раздел 18. 6), [c.195]


Смотреть страницы где упоминается термин Сплавы протекторные: [c.13]    [c.13]    [c.393]    [c.459]    [c.16]    [c.264]    [c.220]    [c.207]    [c.184]    [c.191]    [c.192]   
Защита от коррозии старения и биоповреждений машин оборудования и сооружений Т2 (1987) -- [ c.283 ]




ПОИСК







© 2025 chem21.info Реклама на сайте