Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Атмосфера с окислительной

Рис. 21.14. Упрощенная схема кругооборота кислорода в природе с указанием некоторых про-стейщих реакций с его участием. Важнейшим источником кислорода служит земная атмосфера. Часть О2 образуется в верхних слоях атмосферы в результате диссоциации Н2О под действием солнечного излучения. Часть О, выделяется зелеными растениями в процессе фотосинтеза из Н2О и СО2. В свою очередь атмосферный СО2 образуется в результате реакций горения, дыхания животных и диссоциации бикарбонат-иона в воде. Атмосферный О2 расходуется на образование озона в верхних слоях атмосферы, окислительные процессы выветривания горных пород, в процессе дыхания животных и в реакциях горения. Рис. 21.14. <a href="/info/1472997">Упрощенная схема</a> <a href="/info/1486429">кругооборота кислорода</a> в природе с <a href="/info/655370">указанием некоторых</a> про-стейщих реакций с его участием. <a href="/info/1514093">Важнейшим источником</a> кислорода служит <a href="/info/861085">земная атмосфера</a>. Часть О2 образуется в <a href="/info/1055830">верхних слоях атмосферы</a> в результате диссоциации Н2О под <a href="/info/411763">действием солнечного</a> излучения. Часть О, выделяется <a href="/info/590744">зелеными растениями</a> в <a href="/info/526428">процессе фотосинтеза</a> из Н2О и СО2. В свою очередь атмосферный СО2 образуется в <a href="/info/71789">результате реакций</a> горения, дыхания животных и <a href="/info/331357">диссоциации бикарбонат</a>-иона в воде. Атмосферный О2 расходуется на <a href="/info/3345">образование озона</a> в <a href="/info/1055830">верхних слоях атмосферы</a>, <a href="/info/8204">окислительные процессы</a> <a href="/info/1178847">выветривания горных пород</a>, в <a href="/info/584718">процессе дыхания</a> животных и в реакциях горения.

    При электротермическом способе получения сталей плавление производится с помощью электроэнергии, благодаря чему обеспечивается быстрый подъем и точное регулирование температуры. Кроме того, в электрической печи можно создавать нужную атмосферу — окислительную, восстановительную или нейтральную. [c.352]

    Выплавка стали в электрических печах основана на использовании для нагрева, расплавления и поддержания металла в расплавленном состоянии электрической энергии, трансформируемой в теплоту. В отличие от кислородно-конвертерного метода при электроплавке выделение тепла не связано с использованием окислителей. Поэтому, плавку в электрических печах можно вести в любой атмосфере — окислительной, восстановительной, нейтральной (инертный газ) и в широком диапазоне давлений — в вакууме, при атмосферном или повышенном давлениях. [c.86]

    Углеродистые огнеупорные изделия изготовляют обычно из прессованного древесного угля, кокса или графита. Они выдерживают температуру до 3500°, не разъедаются шлаками и другими силикатами. Однако при нагревании их в атмосфере окислительных газов (например, воздуха) они быстро изнашиваются. Наибольшее распространение имеют тигли из графита. [c.494]

    Земли в атмосферу окислительную в результате выделения кислорода при фотосинтезе. В настоящее время предполагают, что процесс фотолиза воды в верхних слоях атмосферы с удалением водорода в космическое пространство не смог бы обеспечить образование большого количества кислорода в течение докембрийского периода [18]. [c.1008]

    Платиновый контейнер, атмосфера окислительная, скорость роста 2 мм/ч, осевой градиент температуры 1 град/мм [c.111]

    Достигаемая температура зависит в основном от конструкции и материала нагревательного элемента. Применяя для нагревательных элементов такие высокоомные жаропрочные материалы, как нихром, карборунд, графит, вольфрам, молибден и др., можно достигать температур от 300—400 до 3 000°С. Кроме того, при использовании нагревательных элементов из указанных материалов в рабочей камере нагревательной печи можно создавать любую газовую атмосферу окислительную, восстановительную, нейтральную или вакуум. [c.30]

    Биохимическая очистка [5.21, 5.24, 5.33, 5.55, 5.64, 5.72]. Метод основан на способности микробов использовать в процессе своей жизнедеятельности различные растворимые органические и неокис-ленные неорганические соединения (например, Сг +, аммиак, нитриты, сероводород). Поэтому применение биохимического метода дает возможность удалять из сточных вод разнообразные токсичные органические и неорганические соединения. Если скорость биохимического процесса определяется условиями подвода кислорода и поверхностью микробных тел (диффузионные факторы), те применяют аэротенки — смесители с пневматической или механической аэрацией. При пневматической аэрации часть органических соединений может десорбироваться в атмосферу. Если скорость биохимического процесса зависит только от кинетических факторов и практически не зависит от наличия кислорода и числа микробных тел, то применяют биофильтры, окислительные пруды и водоемы. [c.496]


    Силикаты марганца, железа, меди, никеля и кобальта, будучи растворены в стеклах и глазурях, окрашивают их в различные цвета. На интенсивность окраски и ее цвет влияет состав стекла, температура варки и характер печной атмосферы (окислительный или восстановительный). [c.43]

    Катализатор вполне устойчив в окислительных или восстановительных средах при температурах до 550—600 °С, однако длительное пребывание в тех же условиях в атмосфере водяного пара может привести к снижению активности и прочности катализатора. Изменения в свойствах катализатора в присутствии водяного пара происходят вследствие старения и сокращения активной поверхности окиси алюминия, а отчасти, и повышения летучести и потери окиси молибдена. [c.14]

    Важное условие полного сгорания органических отходов в печи — подача достаточного количества воздуха. При его недостатке в атмосферу могут попадать значительные количества оксида углерода. Для обеспечения полной окислительной деструкции большинства органических отходов требуется 5—10% избытка воздуха (1—2% О2). [c.135]

    Для увеличения полноты и скорости растворения дифенилолпропана рекомендуется повышать температуру, но не более чем до 60 °С во избежание потемнения продукта. Чтобы предотвратить вредное окислительное действие воздуха, процесс проводят в атмосфере инертного газа или в восстановительной среде, для чего в щелочной раствор добавляют гидросульфиты, сульфиты, метабисульфиты или дитиониты щелочных металлов - [c.164]

    Катализатор состоит из шпинели (Ы1А)201), в которой содержится избыток никеля (5—10%). Введение в катализатор 0,25— 1% борного ангидрида увеличивает механическую прочность, понижает температуру прокаливания и обеспечивает получение в окислительной атмосфере стабильного контакта. Применяют в процессе конверсии тяжелых углеводородов [c.66]

    Печи с вращающимся барабаном с непрямым нагревом. Печи с наружным нагревом барабана (топливные). Для тепловой обработки материалов (в условиях герметизации) в окислительной, инертной или восстановительной атмосфере а также в тех случаях, когда не допускается соприкосновение мате риала с дымовыми газами и воздухом, используются печи с вращающимся барабаном, помещенным внутрь электрической или пламенной нагревательной камеры. Конструкция печи с непрямым нагревом приведена на рис. 13. [c.225]

    Гидрогель окиси алюминия подают в сушилки, где при температуре воздуха на входе в сушилку 540° С и на выходе 150—175° С формуются частицы алюминия. Полученные частицы пропитывают раствором азотнокислого никеля, сушат и прокаливают в течение 7 ч при температуре 870° С и концентрации водяного пара в окисляющем газе 80%. Отработанный катализатор выводят из зоны контактирования, пропитывают раствором соли никеля, сушат и прокаливают в окислительной атмосфере. содержащей от 25 до 80% водяного пара [c.79]

    Технологическим требованием при выборе горелок является способ подвода воздуха, необходимого для горения. Длиннопламенные горелки, в которые воздух поступает непосредственно к пламени из окружающей атмосферы, обеспечивают достижение в рабочей камере печи высоких температур на длинных участках. Такие горелки типа ВРГ применяются во вращающихся печах. В инжекционные горелки воздух засасывается из окружающей среды они применяются в нагревательных, трубчатых печах, работающих с а > 1. Дутьевые горелки, в которые воздух нагнетается, применяются в большинстве типов печей. В этих горелках возможно получение теплоносителя с восстановительной, нейтральной или окислительной химической активностью в зависимости от принимаемой величины а. Они дают возможность автоматически регулировать процесс сжигания. [c.154]

    Предупреждение коррозии газового тракта. Шлемовые линии окислительных а.ппаратов и сепараторы подвергаются коррозии из-за наличия в газах, хотя и в незначительных количествах,, диоксида серы и хлорида водорода, а также за счет конденсации воды. В результате коррозии возникают свищи с выбросом в атмосферу горючих веществ, что обусловливает возможность загорания, особенно в случае прорыва газового тракта вблизи печи сжигания газов. [c.179]

    Решающее влияние на эволюцию всех сфер Земли, прежде ьсего на биосферу, оказали зарождение и последующее интенсивное развитие фотосинтеза зеленых растений, затем возникновение живых организмов. Развитие фотосинтеза приводило к выделению больших количеств свободного кислорода в гидросфере, затем в с1Тмосфере и накоплению массы живого вещества сначала в океане, потом и на суше. Поглощаемый фотосинтезом углекислый газ постепенно убывал в атмосфере Земли. Аммиак и метан практически полностью исчезли из атмосферы в результате окисления. Земная атмосфера приобретала качественно новый, близкий к современному азотно-кислородный состав с небольшим количеством углекислого газа. Подобные процессы с изменением химического состава происходили как в морской воде, так и горных породах Земли. И морской воде в результате ускорения окислительных процессов кислоты превратились в соли металлов (хлориды, сульфаты натрия, 1 алия, кальция и т.д.). С изменением pH морской воды менялись [c.42]


    На заводе Серп и молот было в свое время установлено преимущество проведения термообработки и нагрева коррозионно-стойких хромоникелевых сталей в окислительной атмосфере (сжигание топлива с коэффициентом расхода воздуха а > 1), в которой снижается угар металла. Количественное исследование этого явления, выполненное А. А. Ереминым на кафедре коррозии металлов МИСиС (рис. 93), показало, что в то время как для стали [c.133]

    Для футеровки ванны руднотермических печей используются углеродистые блоки. Они имеют следующие преимущества сохраняют прочность при высокой температуре достигающей в реакционной зоне 2000 °С, химической стойкостью к воздействию агрессивного расплавленного шлака и феррофосфора, обладает сравнительно большой теплопроводностью. Поскольку углеродистые блоки не стойкие к окислительной атмосфере, их применяют для футеровки участков, которые изолированы от окислительных реагентов шихты, а именно, для футеровки подины, боковых стенок ванны. Блоки для футеровки подины имеют толщину 1100 мм, а блоки боковых стенок имеют толщину 925 мм. Высота футеровки боковых стенок углеродистыми блоками равна 1650 мм. [c.123]

    В окислительно-восстановительных реакциях важная роль принадлежит некоторым катализаторам, являющимся полупроводниками ( 55 ), причем между их каталитическим действием и электронно-физическими свойствами (энергетическими уровнями и работой выхода электрона) существует связь. Так, С. Я. Пшежецкий и И. А. Мясников показали, что существует отчетливая связь между электропроводностью окиси цинка и ее каталитической активностью в реакции дегидрогенизации изопропилового спирта с образованием ацетона. Это наблюдается и между каталитической активностью и температурой, и при сопоставлении результатов, полученных в атмосфере чистого азота, с результатами, получаемыми при добавлении к азоту 0,4% кислорода, сильно снижающего и электропроводность, и каталитическую активность окиси цинка в данном процессе. [c.498]

    II это никогда не дает стопроцентной гарантии, так как может привести к значительному завышению затрат вследствие слишком большого или слишком малого количества легирующих добавок. В практике чаще всего приходится встречаться с окислением труб со стороны продуктов сгорания и коррозией серными соединениями внутри труб. Оба эти типа коррозии можно устранить правильным выбором легирующих добавок и стали. В табл. II приведены максимальные температуры труб, при которых отдельные виды стали выдерживают окислительную атмосферу. [c.31]

    В процессе отбора (особенно измельчения) и хранения пробы в массе образца (прежде всего на поверхности) могут проходить химические реакции, меняющие состав анализируемого объекта. Обычно это взаимодействие с компонентами атмосферы, окислительно-восстановительные реакции и др. Так, известно, что концентрация пестицидов в растени51х, почве и т. п. со временем значительно понижается, что обусловлено прежде всего химическими превращениями пестицидов. При анализе геологических образцов в процессе пробоотбора наблюдаются заметные потери определяемых компонентов вследствие окисления [сера, рений, железо (II)] или восстановления (ртуть). Потери ртути в пробе, если не принять особых мер предосторожности, могут достигать 60%. [c.66]

    В наших исследованиях сырьевая смесь для получения алюмоферри-тов кальция составлялась из условия получения С4АР, как это условно и принимается при расчете сырьевых смесей и минералогического состава портландцементного клинкера. Смеси приготавливались из материалов марки ч. д. а. Обжиг образцов производился в специально сконструированной платинородиевой трубчатой печи с регулируемой газовой атмосферой. Окислительный обжиг образцов осуществлялся в обычной атмосферной среде. В качестве нейтральной и восстановительной газовых сред использовали соответственно непрерывный ток азота и водорода со скоростью 0.1 л/мин. Конечная (максимальная) температура обжига была принята 1350° С. При максимальной температуре обжига образцы были выдержаны в печи в течение 3 часов. Для выявления изменений в фазовом составе твердых растворов алюмоферритов кальция было предусмотрено различное охлаждение на воздухе, в токе азота, в токе водорода и в воде. [c.271]

    Вспомогательные добавки улучшают или придают некото — рые специфические физико —химические и механические свойства пеолитсодержащих алюмосиликатных катализаторов (ЦСК) крекинга. ЦСК без вспомогательных добавок не могут полностью удовлетворять всему комплексу требований, предъявляемых к современным промышленным катализаторам крекинга. Так, матрица и активный компонент — цеолит, входящий в состав ЦСК, обладают только кислотной активностью, в то время как для организации интенсивной регенерации закоксованного катализатора требуется наличие металлических центров, катализирующих реакции окислительно-восстановительного типа. Современные и перспектив — гые процессы каталитического крекинга требуют улучшения и оптимизации дополнительно таких свойств ЦСК, как износостойкость, механическая прочность, текучесть, стойкость к отравляю — Б(ему воздействию металлов сырья и т.д., а также тех свойств, которые обеспечивают экологическую чистоту газовых выбросов в атмосферу. [c.114]

    Основную массу отходов производства резинотехнических изделий вывозят на свалки или сжигают. Это приводит к загрязнению атмосферы, подпочвенных вод, исключению из севооборота сотен гектаров земли. Отходы производства резинотехнических изделий перерабатывают с помощью различных методов деструкции нолнмеров термической, термокаталитической в присутствии соединений марганца, ванадия, меди, хрома, молибдена или вольфрама с применением химических агентов (кислот Льюиса, нитрозосоединений, окислительно-восстановительных систем и др.) биохимической, механохимической, фо-тоокислнтелыгай, ультразвуковой и др. [c.142]

    При установке и эксплуатации мокрых газгольдеров, предна-. значенных для ацетилена и ацетиленсодержащих газов, необходимо руководствоваться Правилами и нормами техники безопасности и промышленной санитарии для проектирования и эксплуатации производств ацетилена окислительным пиролизом метана и электрокрекингом метана для целей переработки, а также производства ацетилена из карбида кальция для газосварочных работ . Выпускать ацетилен из газгольдера в атмосферу при отключении газгольдера на ремонт или профилактический осмотр не допускается. При отключении газгольдера находящиеся в нем газы должны быть выбраны до минимального объема, после чего газгольдер и подключенные к нему ацетиленопроводы необходимо заполнить природным газом. Смесь природного газа, содержащую ацетилен, нужно направить для сжигания на свечу, после чего газгольдер и ацетиленопроводы необходимо продуть азотом. Не прекращая азотную продувку, при открытой центральной трубе (свече) на колоколе нужно слить из резервуара. воду. Для обеспечения безопасной работы мокрого газгольдера, содержащего ацетилен или ацетиленсодержащие смеси, необходимо обеспечить непрерывную продувку азотом сливных баков, соединенных воздушниками с атмосферой. [c.230]

    Носитель получают смешением мел-коизмельченной каолиновой глины и древесной муки или других выгорающих добавок (нефтяной кокс, крахмал, сажа и др.)- Объемное отношение древесной муки к глине от 0,15 1 до 1 1. Смесь формуют, нагревают в окислительной атмосфере- при температуре 815° С и обрабатывают при 650° С газообразными реагентами (хлористый аммоний и сероводород) для превращения основного количества примеси железа в летучую или растворимую в кислоте форму. Примеси железа затем отдувают или промывают. После промывки кислотой глину сушат и прокаливают при [c.88]

    Наиболее совершенный промышленный способ получения стали — и л а в к а в электрических и е ч а х. Этим способом В1.1-плавляют 11 настоящее время большинство сортов специальны, сталей. В электрической печи легко обесгечнвается быстрый подъем н точное регулирование температуры и ней можно создавать окислительную, восстановительную или нейтральную атмосферу. Это позволяет получать сталь с наименьшим количество,, вредных примесей в то же время заданный состав стали обеспечивается с высокой точностью. [c.681]

    Г азы, выходящие из окислительного аппарата, состоят из азота, (Кислорода, оксидов углерода, углеводородов и их кислородных производных, а также водяных паров, образующихся при окислении углеводородного сырья и в результате подачи воды (или водяного пара) в газовое пространство окислительного аппарата. До сравнительно недавнего времени эти газы выводили в атмосферу, т. е. они являлись одним из основных источников загрязнения воздушного бассейна, связанных с работой нефтеперерабатывающих заводов. Дополнительным и часто значительиым источнико М загрязнения воздушного бассейна могут быть пары, выделяющиеся при наливе горячего битума в железнодорожные бункеры и автобитумовозы или розливе его в бумажные мешки и бочки. [c.167]

    Образование сточных вод в результате реакций окисления можно иаключить, поддерживая температуру газового тракт -на всех его участках от окислительного аппарата до печи сжи-гания газов окисления выше 100 °С. Водяные пары при такой температуре не конденсируются и в итоге выводятся в атмосферу через дымовую трубу печи сжигания газов окисления. [c.171]

    Для прямогонных топлив, надежно стабилизированных принародными ингибиторами окисления, этот метод давал результатыс, хорошо коррелирующие с опытом эксплуатации. С внедрениел >и легкоокисляемых гидрогенизационных топлив испытаний герме -тиков по ГОСТ 424—63 оказалось недостаточно. В условиям эксплуатации топливо контактирует с атмосферой, и в нем, еслг оно недостаточно стабилизировано, протекают окислительны г [c.241]

    Ответ, видимо, заключается в рассмотрении пути развития жизни на Земле. Предполагается, что на ранней стадии существования Земли она имела восстановительную атмосферу, состоявшую из таких газов, как Hj, СН4, NH3, Н2О и HjS, но содержавшую очень мало свободного О2 или вообще не имевшего его. В этих восстановительных условиях органические молекулы, которые образовывались небиологическими способами, не могли разрушаться в результате окисления, как это происходит в наше время, а продолжали накапливаться в течение тысячелетий. Первые формы живых организмов, по-видимому, питались тем, что они могли извлечь из этого химического супа в океанах, и получали энергию путем разложения встречающихся в естественных условиях соединений с большим запасом свободной энергии. Скорее всего, lostridia и родственные ей бактерии сегодня являются живыми ископаемыми, потомками тех древних способных к ферментации анаэробов, которые отступили в редкие анаэробные области мира, когда атмосфера в целом накопила большие количества свободного Oj и приобрела окислительный характер. [c.334]

    Насколько сейчас известно, наша планета образовалась приблизительно 4,6 миллиарда лет назад, а простейшие ферментирующие одноклеточные формы жизни существуют 3,5 миллиарда лет. Уже 3,1 миллиарда лет они могли бы использовать фотосинтез, но геологические данные об окислительном состоянии осадочных отложений железа указывают, что атмосфера приобрела окислительный характер лишь 1,8-1,4 миллиарда лет назад. Многоклеточные формы жизни, которые, по-видимому, зависели от изобилия энергии, возможного только при дыхании кислородом, появились приблизительно от 1000 до 700 миллионов лет назад, и именно в то время наметился путь дальнейшей эволюции высших организмов. Наиболее революционизирующим шагом, после зарождения самой жизни, было использование внепланетного источника энергии, Солнца. В конечном итоге это превратило жалкие ростки жизни, которые утилизировали случайно встречающиеся природные молекулы с большой свободной энергией, в огромную силу, способную преобразовать поверхность планеты и даже выйти за ее пределы. [c.337]

    Наиболее стойкий в окислительной среде, в восстановительной среде и в атмосфере серосояержащвх газов быстро разрушается. [c.136]

    Коррозионный нзнос. Коррозией называется процесс разрушения металлов при химическом или электрохимическом взаимодействии их с окружающей средой. Металлы разрушаются при взаимодействии с жидкими и газообразными продуктами, а также в результате окислительно-восстановительных процессов взаимодействия с окружающей атмосферой. [c.47]

    Истинные полупроводники (собственная полупроводимость) СиО, С03О4, rgOg. Концентрация электронных дырок равна концентрации междоузель-ных электронов Ла + к 0 Электропроводимость не зависит от окислительной способности атмосферы. [c.39]

    Х13Н4Г9 наблюдается, как и для углеродистых сталей, уменьшение скорости окисления с уменьшением коэффициента расхода воздуха (т. е. окислительной способности атмосферы), для хромоникелевых сталей и нихрома скорость окисления уменьшается в увеличением коэффициента расхода воздуха а. Во втором случае скорость окисления сплавов определяется, с одной стороны, окислительной способностью газовой среды и, с другой — защитными свойствами образующихся окисных пленок, которые возрастают с увеличением содержания хрома в сплавах и окислительной способности газовой среды. Электронографическое исследование позволило объяснить различие в поведении различных сплавов при их нагреве в одинаковых условиях и каждого при нагреве в различных атмосферах (см. рис. 93) структурным составом образующихся на их поверхности окисных пленок. Этот эффект уменьшения окисления металла с увеличением окислительной способности газа находит практическое использование в заводской практике. [c.134]

    Сокращать время контакта масла с кислородом воздуха можно в основном при транспортных и нефтескладских операциях — путем герметизации резервуаров, цистерн и тары. При упаковке масла в герметически закрытую тару (например, в запаянные бидоны), окислительные процессы практически прекращаются после того, как прореагирует весь ранее растворившийся в масле кислород. Герметизация других емкостей, особенно вертикальных резервуаров, представляет значительные трудности, поэтому в них большей частью наблюдается свободный доступ воздуха. В отдельных случаях, например при заправке рабочей жидкостью гидравлических систем особо ответственного назначения, в баках заправочных агрегатов создают атмосферу азота. Это позволяет исключить контакт масла с кислородом, однако способ должного развития не получил. [c.104]


Смотреть страницы где упоминается термин Атмосфера с окислительной: [c.59]    [c.124]    [c.88]    [c.59]    [c.32]    [c.90]    [c.20]    [c.89]    [c.91]    [c.14]    [c.380]   
Жизнь как она есть, ее зарождение и сущность (2002) -- [ c.60 ]




ПОИСК





Смотрите так же термины и статьи:

Атмосфера

Химическое воздействие воздушной атмосферы на протекающие в ней окислительные процессы



© 2025 chem21.info Реклама на сайте