Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пренатальная диагностика наследственных болезней

    Распространение методов картирования на очень большие, сложные геномы растений и позвоночных, включая человека, сталкивается с серьезными проблемами. Это связано с огромными размерами геномов и малочисленностью маркеров, а также трудностями экспериментальною скрещивания (у человека такие скрещивания вообще невозможны). Ранее при построении генетических карт человека ученые могли использовать только редкие данные по большим семьям, члены которых обладали специфическим мутантным фенотипом. Число идентифицированных локусов в геноме человека было очень невелико. Все это затрудняло не только фундаментальный генетический анализ, но и раннюю диагностику наследственных болезней. До недавнего времени пренатальная диагностика была возможна лишь для ограниченного числа болезней - тех, которые обусловливались значительными хромосомными перестройками (например, синдром Дауна, связанный с трисомией по хромосоме 21) или сопровождались специфическими фенотипическими проявлениями, которые легко обнаруживались при развитии плода (например, болезнь Тея-Сакса, причиной которой служит отсутствие гексозаминидазы А-гидролазы лизосом). Ситуация стала меняться с появлением [c.353]


    Клиническая диагностика нарушений метаболизма. Болезни, вызванные наследственными нарушениями метаболизма, встречаются довольно редко. Это значит, что даже активно работающий педиатр за все время своей практики встретится лишь с несколькими случаями, поэтому трудно ожидать от каждого врача постановки правильного исчерпывающего диагноза и, тем более, правильного лечения. В США и Европе существует несколько педиатрических центров, специализирующихся в области диагностики (в том числе пренатальной) и лечения отдельных заболеваний или небольших групп болезней, обусловленных наследственными повреждениями ферментов. Такая узкая специализация позволяет обеспечить высочайший на сегодня уровень медицинского обслуживания. [c.13]

    Пренатальная диагностика наследственных болезней [c.342]

    Необходимость осмысления этических аспектов использования новых технологий возникала всегда. Отличие современного периода в том, что скорость реализации идеи или научной разработки в результат резко повысилась. Например, от рождения идеи пренатальной диагностики наследственных болезней до её широкого применения в клинич кой медицине прошло лишь 3 года. [c.343]

    Пренатальная диагностика — диагностика наследственных болезней или других нарушений в период внутриутробного развития. [c.209]

    Безусловно, медико-генетическое консультирование семей просеивает их на предмет пренатальной диагностики. Оптимальным вариантом просеивания с целью профилактики наследственной патологии путём пренатальной диагностики явилось бы медико-генетическое консультирование с проведением генеалогического анализа всех семей, планирующих деторождение. В этом случае, по-видимому, около 10% женщин попали бы в группу, подлежащую более глубокому обследованию. При медико-генетическом консультировании женщины направляются на пренатальную диагностику по следующим показаниям возраст 35 лет и старше (для мужчин — 45 лет и старше), наличие в семье или в популяции пренатально выявляемой наследственной болезни, неблагоприятный акушерский анамнез (повторные спонтанные прерывания беременности или рождение ребёнка с врождёнными пороками развития), сахарный диабет, эпилепсия, инфекции у беременной, лекарственная терапия, тератогенные факторы. [c.321]

    Генетика человека прошла действительно долгий путь развития от простого накопления сведений о семейных болезнях и наследственных признаках до расшифровки нуклеотидной последовательности всего генома от вероятностного прогноза рождения ребенка с наследственной болезнью до достоверной пренатальной и доклинической диагностики, от концепции вырождения наследственно отягощенных семей до предупреждения развития заболевания даже при патологической наследственности. [c.145]


    Полиморфизм ДНК и картирование. В последние годы выявляется все больше случаев полиморфизма ДНК по сайтам рестрикции (разд. 2.3.2.7, 6.1.2). Это обстоятельство раскрыло новые дополнительные возможности картирования генома человека. Установление тесного сцепления с рестрикционным маркером ДНК позволило локализовать гены многих важных наследственных болезней в конкретных хромосомных сегментах. На рис. 3.24, А представлена большая родословная с хореей Гентингтона. ДНК-маркер и, следовательно, ген хореи расположены на хромосоме 4. Модельные расчеты [584 754 887] показали, что для картирования всего генома необходимо лишь несколько сотен рестрикционных маркеров ДНК, случайным образом распределенных по геному человека. Для целей медико-генетического консультирования и пренатальной диагностики (разд. 9.1) достаточен по крайней мере один маркер, тесно сцепленный с геном данного наследственного заболевания. [c.202]

    Однако долг каждого врача независимо от области его специализации (будь то общая терапия, педиатрия или медицинская генетика) - правильно диагностировать заболевания, вызванные наследственными нарушениями метаболизма. Ранняя диагностика важна не только в отношении болезней, для которых существует специальное лечение (разд. 4.2.2.9), но и в тех случаях, когда необходимо предотвратить рождение больных детей (пренатальная диагностика). [c.13]

    По мере развития генетического консультирования, распространения пренатальной диагностики, по мере развития методов лечения наследственных заболеваний все большее число стран будет проводить мониторинг наследственных болезней. Выполнение этих программ обогатит наши знания о частоте встречаемости соответствующей патологии. [c.294]

    Появление новых диагностических приемов возможно только в результате глубокого изучения патогенеза заболевания. Разработка диагностики с применением культивируемых клеток возможна только после изучения клеточных аспектов патогенеза. Именно таким образом были разработаны методы биохимической диагностики, в частности методы пренатальной диагностики [3—5], раскрыта природа генетической гетерогенности ряда наследственных болезней [6, 7]. [c.251]

    Заключение медико-генетического консультирования и советы родителям (два последних этапа) могут быть объединены. В результате проведенных генетических исследований врач-генетик дает заключение об имеющейся болезни, знакомит с вероятностью возникновения болезни в будущем, дает соответствующие рекомендации. При этом учитывается не только величина риска появления больного ребенка, но и тяжесть наследственного или врожденного заболевания, возможности пренатальной диагностики и эффективности лечения. Вместе с тем, все решения по дальнейшему планированию семьи принимаются только супругами. [c.227]

    Многие методы молекулярной генетики начинают широко при--меняться в пренатальной диагностике наследственных болезней,, например гемоглобинопатий. Так, в 1978 г. Кен и Доузи разработали метод диагностики серповидноклеточной анемии путе№ анализа ДНК из клеток околоплодной жидкости. Это несравненно более безопасный метод, чем взятие для анализа крови плода, когда вероятность аборта доходит до 7%. Серповидноклеточная анемия —это одно из наиболее часто встречающихся нарушений синтеза гемоглобина. Она развивается в результате замены глутаминовой кислоты в 6-м положении Р-цепи гемоглобина на валин. При дезоксигенации эритроциты, содержащие-аномальный HbS (две обычные а- и две аномальные р-цепи), приобретают форму полумесяца (серповидную). Такие негибкие [c.342]

    Помимо молекулярной генетики, метол поли.меразной цепной реакции широко используется в практических исследованиях пренатальной диагностике наследственных болезней, выявлении вирусных инфекций, а также в судебной. медицине, поскольку этот метод позволяет проводить генетичес- [c.71]

    Методы обнаружения нуклеотидных замен в геномной ДНК позволили исследователям разобраться в природе многих наследственных болезней человека. Эти методы дают возможность идентифицировать специфические мутации, приводящие к заболеванию [1—6], а также полиморфные участки ДНК, используемые в качестве маркеров в генетическом анализе [7—11]. Благодаря развитию методов выявления нуклеотидных замен стала реальностью пренатальная диагностика многих наследственных болезней человека. Если ген, отвечающий за заболевание, известен, соответствующую мутацию можно обнаружить в геномной ДНК или в РНК при помощи блот-гибридизации с использованием меченых олигонуклеотидов в качестве гибридизационных зондов. В том случае, когда мутировавшая нуклеотидная последовательность неизвестна, замены нуклеотидов можно определить по полиморфизму длины рестрикционных фрагментов <ПДРФ) [7]. ПДРФ обнаруживается по наличию или отсутствию сайта рестрикции во фрагменте геномной ДНК при гибридизации меченого ДНК-зонда с обработанной рестриктазами геномной ДНК, расфракционированной по размеру в агарозном геле и перенесенной на мембранный фильтр. Этот метод оказался очень эффективным для выявления как значимых мутаций, так и нейтрального полиморфизма в геноме человека и других организмов. Однако большую часть мутаций и полиморфных участков генома не удается обнаружить с помощью анализа ПДРФ, поскольку вероятность того, что замена нуклеотида изменит именно сайт рестрикции, низка. Так, например, многие точковые мутации гена р-глобина человека, вызывающие талассемию, не изменяют сайтов рестрикции, а потому не могут быть непосред- [c.123]


    Современная медицинская генетика вооружила клиницистов методами ранней, досимптомной (доклинической) и даже пренатальной диагностики наследственных болезней. Интенсивно развиваются и в некоторых центрах уже применяются методы преимплантационной (до имплантации зародыша) диагностики. [c.17]

    Пренатальная диагностика наследственных болезней — комплексная, быстро развивающаяся область медицины, использующая и УЗИ, и оперативную технику (хорионбиопсия, амнио- и кордоцентез, биопсия мышц и кожи плода), и лабораторные методы (цитогенетические, биохимические, молекулярно-генетические). Забота семьи о здоровье будущего ребёнка (а иногда и необоснованная обеспокоенность) ставит перед врачом задачу оценки не только генетических и средовых факторов риска исхода беременности (медико-генетическая консультация), но и возможностей пренатальной диагностики. [c.320]

    Возможности диагностики наследственных болезней почти безграничны благодаря молекулярно-генетическим, биохимическим цитогенетическим методам. И уже сегодня как само собой разумею-ш,ееся принимается информация о пренатальной диагностике (обш ее число таких анализов при беременности исчисляется миллионами). Сейчас никого не удивляет предимплантационная диагностика, когда врач-генетик, располагая лишь одной клеткой, ставит точный диагноз и предупреждает о наследственной предрасположенности к той или иной болезни. [c.142]

    Прогресс медицинской генетики поставил этические вопросы в связи 1) с генной инженерией (генодиагностика и генотерапия) 2) с разработкой методов ранней диагностики наследственных болезней 3) с новыми возможностями медико-генетического консультирования (оценка гетерозиготных состояний, оплодотворение in vitro и др.) 4) с пренатальной и преимплантационной диагностикой наследственных болезней 5) с охраной наследственности человека от повреждающего действия новых факторов окружающей среды. [c.344]

    Существенной областью применения ДНК-олигонуклеотидое является дородовая (пренатальная) диагностика наследственных заболеваний. Более 500 наследственных болезней человека связаны с нарушением какого-то одного гена. В большинстве случаев эти мутации рецессивны. Это означает, что болезнь развивается, если человек получает дефектные копии гена сразу от обоих родителей. Одна из задач современной медицины состоит в том, чтобы выявлять такие аномальные эмбрионы до рождения, информировать об этом мать и дать ей возможность прекратить бфеменность. Например, для серповидноклеточной анемии известна точная нуклеотидная замена в мутантном гене (последовательность GAG заменена на GTG в цепи ДНК, кодирующей Р-цепь гемоглобина). В данном случае синтезируют два олигонуклеотида. Один из них соответствует последовательности нормального гена в участке предполагаемых мутаций, другой несет замену, обусловливающую болезнь. В условиях когда эти последовательности достаточно коротки (примерно 20 нуклеотидов) и при темпфатуре гибридизации, при которой стабильность сохраняют лишь точно совпадающие цепи, можно использовать радиоактивные зонды. Тест состоит в том, что из эмбриональных клеток, содержащихся в амниотической жидкости (ее получают в ходе процедуры, называемой амниоцентезом), выделяют ДНК и используют ее для Саузерн-блоттигна с радиоактивными ДНК-зондами. Дефектный эмбрион легко опознается, поскольку его ДНК будет гибридизоваться только с олигонуклеотидом, комплементарным мутантной последовательности дак. К сожалению, для большинства наследственных болезней дефект на уровне ДНК еще не расшифрован, однако круг заболеваний, для которых применяется дородовая диагностика, постоянно расширяется. Это стало возможно благодаря использованию феномена полиморфизма длины рестрикционных фрагментов. В данном случае с помощью гибридизации выявляют наличие или отсутствие определенных сайтов рестрикции, тесно сцепленных с дефектными генами. [c.241]

    Сходный метод был применен для пренатальной диагностики -талассемии. При этой гемоглобинопатии -цепь гемоглобина синтезируется либо в недостаточном количестве, либо не синтезируется вообще. При использовании метода определения полиморфизма рестрикционных фрагментов по длине (RFLP) глубоких знаний о молекулярных основах патологических изменений при данном заболевании не требуется. Это по сути метод, отпечатков пальцев , при помощи которого выявляются аномалии, сопутствующие клиническим симптомам, и поэтому он может применяться при лечении многих наследственных болезней  [c.344]

    Полиморфизм длины фрагментов рестрикции. Если имеется подходящий ДНК-зонд, то можно обнаружить прямым методом некоторые генетические болезни, возникающие вследствие мутаций (гемофилия, мыщечная дистрофия и др.). Ответственный за болезнь, но неидентифицированный ген может быть обнаружен, если он находится вблизи последовательности ДНК, поддающейся определению. Во всем человеческом геноме примерно одно из 150 оснований является полиморфным, т. е. варьируется у разных индивидуумов. Каждое щестое из этих случайных изменений или порождает, или разрушает участок рестрикции. В результате этого потенциальные участки рестрикции присутствуют вдоль молекулы ДНК с интервалом примерно в 1000 пар оснований. Их наличие или отсутствие у разных людей приводит к тому, что ДНК в процессе рестрикции разрезается на фрагменты разной длины (полиморфизм длины рестрикционных фрагментов). Если при обследовании членов семьи обнаруживается взаимосвязь между полиморфизмом длины рестрикционных фрагментов и наследственным заболеванием, делается заключение, что данный участок рестрикции расположен вблизи от гена, ответственного за патологию. В таком случае присутствие данного типа полиморфизма можно использовать для предсказания наличия мутантного гена у другого члена семьи или в ткани плода. Однако использование этой техники для пренатальной диагностики требует предварительного обследования семьи. [c.528]

    Транслокации относительно редки. Поэтому ни одна исследовательская группа не может накопить достаточно большой материал для окончательного вывода. Следовательно, необходимо суммировать данные разных авторов, опубликованные в литературе. Однако такие данные содержат много ошибок. Некоторые из них будут обсуждаться позже (разд. 3.3.4 и приложение 3). Например, все сибсы с аномальной хромосомой, как правило, учитываются только в том случае, если по крайней мере один из них поражен. Важно также и то, откуда отобраны сибства с одним пораженным из общей популяции или только из небольшой ее части Эти проблемы могут быть решены довольно просто, если мы имеем дело с наследственной болезнью, поскольку в этом случае семьи учитываются по одному пробанду, пораженному данной болезнью. С транслокациями дело обстоит сложнее, так как семьи могут быть учтены, например, по поводу повторных выкидышей или по пробанду, у которого обнаружена несбалансированная транслокация при рождении, или в результате пренатальной диагностики. Иногда семья оказывается в поле зрения исследователя по причине того, что в ходе популяционного исследования в ней обнаруживают носителя сбалансированной транслокации. Учитывая, что во многих публикациях отсутствует необходимая информация, полностью скорректировать все ошибки, конечно, невозможно, однако корректирующие процедуры Шефера являются на сегодняшний день оптимальными (см. приложение 3). [c.92]

    Сложилась стройная система профилактики наследственных болезней ме-дико-генетическое консультирование, преконцепционная профилактика, пренатальная диагностика, массовая диагностика у новорождённых наследственных болезней обмена, поддаюшихся диетической и лекарственной коррекции, диспансеризация больных и членов их семей. Внедрение этой системы обеспечивает снижение частоты рождения детей с врождёнными пороками развития и наследственными болезнями на 60—70%. Врачи и организаторы здравоохранения могут активно участвовать в реализации достижений медицинской генетики. [c.17]

    Консультируюшие генетики должны стараться давать пациентам наиболее свежую и точную информацию. Она включает в себя данные о распространённости болезни, её этиологии и генетическом прогнозе, а также информацию о генетических тестах, таких как определение носительства, пренатальная диагностика, пресимптоматическая диагностика и диагностика предрасположенности к болезни. Врачи должны помнить о том, что внутри одной наследственной болезни могут быть различные генотипы, фенотипы, прогнозы, реакции на терапию и т. д. [ Не навреди ]. [c.347]


Смотреть страницы где упоминается термин Пренатальная диагностика наследственных болезней: [c.342]    [c.342]    [c.342]    [c.263]    [c.177]    [c.132]    [c.148]    [c.332]    [c.339]    [c.131]   
Смотреть главы в:

Биотехнология -> Пренатальная диагностика наследственных болезней

Биотехнология - принципы и применение -> Пренатальная диагностика наследственных болезней


Биотехнология (1988) -- [ c.342 , c.344 ]

Биотехнология - принципы и применение (1988) -- [ c.342 , c.344 ]




ПОИСК





Смотрите так же термины и статьи:

Болезни

Наследственность

Пренатальная диагностика наследственных



© 2025 chem21.info Реклама на сайте