Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Частота гена

    Одно из возможных применений закона Харди—Вайнберга состоит в том, что он позволяет рассчитать некоторые из частот генов и генотипов в случаях, когда не все генотипы могут быть идентифицированы вследствие доминантности некоторых аллелей. Альбинизм у человека обусловлен довольно редким рецессивным геном. Если аллель нормальной пигментации обозначить А, а аллель альбинизма-а, то генотип альбиносов будет аа, а генотип нормально пигментированных людей-ЛЛ и Аа. Предположим, что в какой-то человеческой популяции частота альбиносов составляет 1 на 10000. Согласно закону Харди— Вайнберга, частота гомозигот аа равна q таким образом, q = 0,0001, откуда q = ]/0,0001 = 0,01. Из этого следует, что частота нормального аллеля равна 0,99. Частоты генотипов нормально пигментированных людей составляют р = 0,99 = 0,98 для генотипа АА и 2pq = = 2 0,99 0,01 й 0,02 для генотипа Аа. [c.115]


    Закон Харди—Вайнберга в генетике аналогичен первому закону Ньютона в механике, который гласит, что любое тело сохраняет состояние покоя или равномерного прямолинейного движения, пока действующие на него силы не изменят это состояние. Реальные тела всегда подвергаются действию внешних сил, но первый закон Ньютона служит отправной точкой для применения других законов механики. Закон Харди—Вайнберга гласит, что при отсутствии возмущающих процессов частоты генов не изменяются. Однако процессы, изменяющие частоты генов, постоянно происходят в популяциях, и без них бы не было эволюции. Закон Харди—Вайнберга-это отправная точка, из которой мы должны исходить, рассчитывая частоты генов, изменяющиеся под влиянием этих процессов. [c.117]

    В такой популяции индивидуум представляет собой в известном смысле минимальную единицу, но в анализах популяций можно сделать еще один шаг и оперировать с частотой гена. Это означает наличие определенной связи между частотами аллелей Л и а и между частотой индивидуумов с генотипами АА, Аа и аа. Эта связь выражена в простой, но очень важной формуле или закономерности, названной формулой Харди — Вейнберга по имени открывших ее ученых. Что касается пары аллелей А-а, то частота в популяции двух входящих в нее аллелей может изменяться от 100% А до 100% а. Если аллели Ana встречаются с одинаковой частотой, то частота каждого из них составляет 50%. [c.436]

    В табл. 2.3 эти результаты представлены в обобщенном виде. Из первоначальных частот генов и значений мы можем теперь вычислить конечные частоты аллелей (т. е. д и р ). Отсюда частота аллеля а после отбора будет равна [c.46]

    Это заболевание имеет моногенную природу, т. е. обусловлено одной-единственной мутацией в гене. Серповидноклеточная анемия — яркий пример роли естественного отбора в регуляции частоты гена в популяции. [c.244]

    Частоты генов и генотипов [c.76]

    При < p имеются три стационарных значения — устойчивые Pl и Ра и неустойчивое Рг. Стационарная система может пребывать в двух локально устойчивых состояниях, существенно разнящихся значениями р — частоты гена. Переход между этими состояниями подобен фазовому переходу первого рода. Ситуация, весьма сходная с рассмотренной в 15.5. При ai = О, т. е. при = iwi, получается переход, подобный фазовому переходу второго рода. [c.555]

    Обратная ситуация возникает в настоящее время в человеческой популяции в отношении рецессивных летальных заболеваний, которые научились теперь лечить. Примером может служить фенилкетонурия (ФКУ). Частота этого аллеля оставляет 0,006. Даже если бы все гомозиготы излечивались и размножались столь же эффективно, как и нормальные люди, частота гена ФКУ возрастала бы очень медленно, а частота гомозигот по этому гену-еще медленнее. Если все индивидуумы, страдающие ФКУ, будут излечиваться, то частота гена ФКУ за одно поколение изменится от 0,06 до 0,006036 ( 1 = + q ). Разумеется, если излечиваются не все больные или если у излечившихся число детей в среднем меньше, чем у здоровых, то частота аллеля ФКУ будет увеличиваться еще медленнее. [c.116]


    Частота гене- ратора, МГц Мощ- ность гене- ратора мВт Высота, наблю- дения, мм Концентрация электронов, см Литера- турный источ- ник [c.732]

    Другими методами, кроме электрофореза. Но в восстановленной форме НЬ5 в 50—100 раз менее растворим, чем НВА, что и заставляет клетки крови, содержащие такой гемоглобин, принимать характерную серповидную форму. Частота гена НЬ5 много выше нормальной частоты мутаций. Она особенно высока в малярийных местностях, так как наличие этого гена связано с устойчивостью к малярии. [c.223]

    Любой физический признак организма, например окраска шерсти у мьппей, определяется одним или несколькими генами. Каждый ген может существовать в нескольких различньгх формах, которые называют аллелями (см. табл. 24.2.). Число организмов в данной популяции, несущих определенный аллель, определяет частоту данного аллеля (которую иногда называют частотой гена, что менее точно). Например, у человека частота доминантного аллеля, определяющего нормальную пигментацию кожи, волос и глаз, равна 99%. Рецессивный аллель, детерминирующий отсутствие пигментации — так называемый альбинизм, встречается с частотой 1%. Это значит, что из общего числа аллелей, контролирующих синтез этого пигмента, 1% не способен обеспечивать его, а 99% делают это. В популяционной генетике частоту аллелей или генов принято выражать не в процентах или простых дробях, а в десятичных дробях. Следовательно, в данном случае частота доминантного аллеля равна 0,99, а частота рецессивного — 0,01. Общая частота аллелей в популяции составляет 100%, или 1, поэтому [c.314]

    Закон Харди—Вайнберга действует только тогда, когда скрещивание случайно, т.е. когда вероятность скрещивания между двумя генотипами равна произведению их частот. О случайном скрещивании речь щла в двух предыдущих главах. В тех случаях, когда скрещивание неслучайно, т. е. особи с определенными генотипами (сходными или различными) спариваются между собой чаще, чем этого следует ожидать на основе случайности, говорят об ассортативном скрещивании. Ассортативное скрещивание само по себе не изменяет частот генов, но изменяет частоты генотипов. Если вероятность скрещивания между сходными генотипами больше случайной, то частота гомозигот будет повышаться если эта вероятность меньше случайной, то частота гомозигот будет понижаться. Вообще если известна система скрещивания, т.е. мы знаем вероятности различных типов скрещивания, то по частотам генотипов в данном поколении можно рассчитать их частоты в следующем поколении. [c.167]

    Интересный подход к проблемам применения термодинамических методов в биологии разработал Б. Гудвин [14]. Отметив, что понятие организации не имеет четкого определения, и указав, что физическая энергия, физическая энтропия и т. п. почти ничего не дают для понимания биологической организации , этот автор утверждает, что и в этом случае можно с пользой применить формальный математический аппарат статистической физики, если ввести новые величины, которые только аналогичны термодинамическим. Далее он утверждает, что в молекулярной биологии из свойств внутриклеточных элементарных частиц должны быть выведены характерные свойства живой клетки. При этом элементарными частицами Гудвин считает цистрон, репликон и т. п. В популяционной генетике, по его мнению, рассмотрение генов в качестве элементарных частиц обеспечило Р. Фишеру крупный успех, так как естественный отбор удалось рассмотреть как явление, основанное на вариации частот генов в популяции организмов. По этим причинам гены следует трактовать, как макроскопические единицы, для которых можно вывести и соответствующие количественные законы. [c.116]

    Непосредственно мы наблюдаем лишь фенотипы, а не генотипы или гены. Изменчивость генофонда может быть описана либо частотами генов, либо частотами генотипов. Если мы знаем соотношение между ге- [c.76]

    Популяционная генетика Последовательный электрофорез Приспособленность Фундаментальная теорема естественного отбора Частоты генов (аллелей) Частоты генотипов Электрофорез в геле (гель-электрофорез) Эффективное число аллелей (п ) [c.104]

    Закон Харди—Вайнберга. Закон, согласно которому частоты генотипов в популяции могут быть предсказаны по частотам генов при условии случайного скрещивания. [c.307]

    Эволюция осуществляется путем изменения частот генов. [c.55]

    Предположим, например, что частота мутирования аллеля А в аллель а равна м = 10 (при этом миграция и отбор отсутствуют). В популяции из 100 размножающихся особей мутации будут оказывать слабое влияние на изменение частот аллелей по сравнению с дрейфом генов, поскольку при этом 4]Уи = 4-10 10 = 4-10" 1. В популяции же, состоящей из 1 млн. размножающихся организмов, напротив, мутации будут влиять на изменение частоты аллелей сильнее дрейфа генов, так как в этом случае 4Nu = 4 10 10 = 40 > 1. Если интенсивность миграции составляет 0,02 (т.е. 2 организма на сотню) в каждом поколении, а мутации и отбор отсутствуют, то частоты генов будут приближаться к их частотам в популяции, из которой происходит миграция (даже в малой популяции, насчитывающей всего около сотни особей), потому что при этом 4Nm = 4 100 0,02 = 8 > 1. [c.130]


    Случайный дрейф генов. Изменение частот генов в ряду поколений, происходящее в результате случайных флуктуаций. [c.315]

    По системе групп крови A4N выделяют три фенотипа, определяемых двумя кодоминантными аллелями одного гена. Частоты гена в % среди различных групп населения составляют  [c.154]

    В одной популяции диких мышей на продуктовом складе был распространен ген альбинизма. Кошек и других плотоядных животных на складе и в его окрестностях не было, так что отбор против альбинизма не шел. В соседних популяциях альбинизм не встречался. За время одной генерации примерно 5% всех мышей попадали на другие склады за счет отгрузки продовольствия, но постоянно прибывали новые мыши вместе с новыми партиями продуктов. В итоге численность популяции оставалась постоянной. Какой процент мышей-альбиносов ожидается в следующем поколении при панмиктическом скрещивании, если начальная частота гена альбинизма составляла 0,25  [c.161]

    Балансовая теория утверждает, что естественный отбор может стабилизировать изменчивость, если существуют гетерозиготность и расщепление генов (Дарвин, придерживавшийся теории слитной наследственности, не мог этого предвидеть). Так называемый уравновешивающий отбор может быть обусловлен а) преимуществом гетерозигот — гетерозигота, обладающая превосходством WAAWaa), будет, ПО определению, способствовать сохранению гомозигот б) отбором, зависящим от частоты в этом случае приспособленность является функцией частоты генов, так что по мере возрастания частоты данного гена его приспособленность снижается и отбор начинает благоприятствовать другому гену до тех пор, пока частота последнего не возрастет и не произойдет обратное. Такая ситуация может быть создана хищником, всегда выедающим особей с более обычными генотипами. Подобное же действие может оказать выбор брачного партнера так, например, самки дрозофилы, если им предоставляется возможность выбирать брачного партнера, чаще, по-видимому, спариваются с самцами, обладающими редкими признаками в) изменениями в давлении отбора в пространстве (различным генотипам благоприятствуют условия в [c.73]

    В одном из весьма популярных определений эволюция рассматривается как изменение частоты отдельных генов из поколения в поколение. Это очень точное определение. Теоретически частоту генов можно измерить можно также регистрировать изменения частоты каждого гена с течением времени. Однако и это определение порождает ряд проблем. Хотя частоты генов в некоторых случаях удается установить, в настоящее время такое измерение возможно лишь для относительно небольшого числа генов, а способов, которые позволяли бы решить, что именно эти гены обусловливают изменения, повышающие выживаемость рассматриваемых организмов, у нас нет. [c.21]

    О дрейфе генов говорят в тех случаях, когда изменения частоты генов в популяциях бывают случайными и не зависят от естественного отбора. Случайный дрейф генов, или эффект Сьюэлла Райта (названный по имени американского генетика, который понял его эволюционное значение), может служить важным механизмом эволюционных изменений в небольших или изолированных популяциях. В небольшой популяции могут бьггь представлены не все гены, типичные для данного вида. Случайные события, например преждевременная гибель особи, бывшей единственным обладателем какого-то аллеля. [c.318]

    Сегодня уже ясно, что мутационный груз человечества накапливался в популяциях в форме сбалансированного полиморфизма или наследственной патологии. Он характеризует наше прошлое, и мы сейчас живем с этим грузом в катастрофически меняюш ихся с генетической точки зрения условиях. В XX в. появилось много новых факторов и условий, меняюш их наследственность человека, с которыми он как биологический вид не сталкивался на протяжении своей длительной эволюции. Это — миграция населения и расширение границ браков, планирование семьи у здоровых людей и репродуктивная компенсация в отяго-ш енных наследственной патологией семьях, насыщение среды обитания человека мутагенами и т. д. Генетические процессы в популяциях человека (изменение частот генов и генотипов, мутационный процесс, отбор) обладают большой инертностью. Вот почему генетические последствия изменения среды обитания человека проявятся не через 1-2 поколения, а, скорее всего, через десятки поколений. Задача современной популяционной генетики человека — научиться предсказывать нежелательные последствия на уровне популяции и снижать неблагоприятные генетические эффекты окружающей среды, изменения демографической структуры, а также уменьшать груз наследственной патологии предыдущих поколений. И генетика человека даже сегодня многое может сделать в этой области. [c.144]

    Расчет частот генов в случае, когда число аллелей данного локуса больше двух, основан на тех же правилах, что и в случае двух аллелей гомозиготы несут по два экземпляра каждого аллеля, гетерозиготы-по одному экземпляру аллелей двух разных типов. Например, в некоторых природных популяциях Drosophila willistoni было обнаружено шесть различных генотипов локуса Ьар-5 в соотношениях, представленных в табл. 22.4. (Ген Lap-5 кодирует фермент лейцинаминопептидазу каждый аллель идентифицируется по показателю, характеризующему подвижность соответствующего полипептида при электрофорезе-см. дополнение 22.1.) [c.78]

    Основное утверждение закона Харди—Вайнберга состоит в том, что в отсутствие элем ет эволюционных процессов, а имени.о мутаций, отбора, миграции и дрейфа генов, часи ты генов остаются неизменными из поколения в поколение. Этот закон утверждает также, что если скрещивание случайно, то частоты генотипов связаны с частотами генов простыми (квадратичными) соотношениями. Из закона Харди—Вайнберга вытекает следующий вывод если частоты аллелей у самцов и самок исходно одинаковы, то при случайном скрещивании равновесные частоты генотипов в любом локусе достигаются за одно поколение. Если частоты аллелей у двух полов исходно различны, то для аутосомных локусов они становятся одинаковы в следующем поколении, поскольку и самцы и самки получают половину своих генов от отца и половину-от матери. Таким образом, равновесные частоты генотипов достигаются в этом случае за два поколения. Однако в случае сцепленных с полом локусов равновесные частоты достигаются лишь постепенно (см. дополнение 23.1). Прежде чем переходить к рассмотрению закона Харди—Вайнберга, мы должны определить, что такое случайное скрещивание. [c.110]

    Значения относительных приспособленностей указывают на направление отбора, т. е. на то, как будут изменяться частоты генов, но ничего не говорят нам о динамике самой популяции. Поскольку приспособленности-это по определению относительные величины, по их значениям нельзя предугадать, будет ли численность популяции увеличиваться или уменьшаться. Предположим, например, что число зигот, производимое каждым из трех генотипов, представленных в табл. 24.1, равно соответственно 40, 45 и 5. Относительные приспособленности в этом случае будут такими же, как и представленные в табл. 24.1, хотя обшее число зигот в популяции уменьшится за одно поколение от 100 до 90, а не увеличится от 100 до 180. [c.139]

    Распределение частот гена I на карте мира изображено на рис. 23.10. Классификация рас, основанная на частоте генов, определяющих группы крови, исходит, конечно, не из того, что люди с различными группами крови относятся к разным расам, а скорее из того, что различия в частотах аллелей, определяющих группы крови, отражают дифференциацию генофонда в целом. Следует, однако, напомнить, что изменчивость частот групп крови системы ABO меньще, чем изменчивость других групп крови, таких, как резус (R), даффи (Fy) и диего (Di), и, следовательно, последние более информативны с точки зрения этнического анализа (табл. 25.10). [c.196]

    Определите частоты генов Lg и Lg в каждой породе, а также используя формулу Майала-Линдстрема, индекс генетического сродства между черно-пестрой и двумя другими породами  [c.158]

    Когда эксперименты по трансдукции проводят с целью количественной оценки частоты генов в клетках-донорах, котрансдукции и др., целесообразно использовать реципиентные штаммы, лизогенные по фагу Р1 кс. В тех же случаях, когда трансдукцию применяют для создания штаммов, это нежелательно. Лизогенные реципиентные штаммы создают следующим образом. [c.94]

    И Фишер, и Холдейн выражали интенсивность отбора через изменения в частотах генов. Те аллели, частота которых относительно других аллелей выше, считаются более приспособленными, поэтому изменение относительных частот аллелей служит мерой неодарвиновской приспособленности. (Обратите внимание, что нельзя ограничиваться рассмотрением абсолютных изменений, так как при понижении абсолютной плотности данного аллеля в популяции он все же может оставлять больше своих представителей, чем другие аллели, если плотность этих других аллелей уменьшается быстрее. В таком случае он все еще более приспособлен, поскольку в преобладающих в данной среде условиях он по сравнению с другими аллелями оказался более преуспевающим.) [c.43]

    На рис. 2.9, Г представлена небольшая популяция. Здесь случайные события могут вызвать сдвиг в сторону от адаптивного пика, несмотря на отбор, и это та возможность, которую Сьюэлл Райт сформулировал вполне определенно. В принципе каждый индивидуум может случайно стать жертвой несчастного случая или же не найти себе брачного партнера, в результате чего он не внесет своего вклада в следующее поколение независимо от того, сколь хорошо он приспособлен. Поэтому гены, которые он несет, как бы хороши они ни были потенциально, не будут представлены в следующем поколении. Для большой лопуляции это не будет иметь существенного значения. Однако в небольших популяциях такие случайные события могут оказать серьезное воздействие на частоты генов, так как эти частоты определяются небольшим числом особей. При таких обстоятельствах популяция может медленно отойти от адаптивного пика процессе этот получил название генетического дрейфа. Подобным же образом при резком сокращении численности популяции или же, что, в сущности, то же самое, при образовании несколькими особями-основателями новой популяции выборка генов из генофонда исходной популяции может произойти неслучайным образом. В результате будет иметь место некое начальное изменение, не связанное с отбором. Это явление известно под названием эффекта основателя. [c.53]


Смотреть страницы где упоминается термин Частота гена: [c.101]    [c.101]    [c.555]    [c.437]    [c.76]    [c.109]    [c.248]    [c.143]    [c.130]    [c.130]    [c.131]    [c.136]    [c.42]    [c.47]    [c.76]    [c.109]   
Смотреть главы в:

Введение в популяционную генетику -> Частота гена


Генетические исследования (1963) -- [ c.436 , c.437 ]

Введение в популяционную генетику (1978) -- [ c.10 ]




ПОИСК







© 2025 chem21.info Реклама на сайте