Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нуклеиновые кислоты локализация в клетке

    Условием осуществления фотосинтеза является локализация необходимых пигментных, окислительно-восстановительных и ферментных систем в специальных органоидах фотосинтезирующих клеток. В случае растений и водорослей — это хлоропласты, в случае бактерий — хроматофоры. В них, наряду с фотосинтезом, происходит также синтез белков, нуклеиновых кислот, липидов, пигментов и других физиологически активных веществ фотосинтезирующие органоиды обладают известной автономностью в клетке. [c.7]


    Локализацию нуклеиновых кислот в отдельных клетках или срезах ткани определяют при помощи трех основных методов  [c.117]

    Содержание и локализацию нуклеиновых кислот в клетке можно определить, используя основные красители в сочетании с обработкой срезов ферментами-нуклеазами, способными разрывать связи между нуклеотидами ДНК или РНК. [c.92]

    Нуклеиновые кислоты — высокомолекулярные биополимеры, обнаруженные во всех типах клеток. Структурными единицами нуклеиновых кислот являются мононуклеотиды, состоящие из гетероциклических азотистых оснований (пуриновых и пиримидиновых), пентоз и фосфорной кислоты. Нуклеиновые кислоты делятся на два типа рибонуклеиновые (РНК) и дезоксирибонуклеиновые (ДНК). РНК и ДНК различаются особенностями химического строения входящих в них пиримидиновых оснований и пентоз, локализацией в клетке и функциональным назначением в клеточном метаболизме. [c.161]

    Несмотря на то что нуклеиновые кислоты были открыты еще в 1865 г. и долгое время привлекали внимание многих исследователей, их роль в жизни клетки оставалась совершенно неясной. На их фундаментальное значение в процессах жизни указывало, во-первых, их присутствие в составе пе только растительных п животных клеток, но и бактерий и вирусов и, во-вторых, их локализация в клетках, изученная гистохимическими методами. Однако сущность их роли оставалась загадкой до тех пор, пока не обнаружили, что вещество, ответственное за трансформацию пневмококков, является полинуклеотидом [1, 3, 10, 13, 14]. [c.299]

    Уже простой перечень локализации нуклеиновых кислот в клетке свидетельствует о том, что вся клетка насыщена ими. Сам по себе этот факт может быть расценен как указание на исключительную значимость нуклеиновых кислот в процессах жизнедеятельности. [c.40]

    Область применения электронно-микроскопических исследований чрезвычайно широка. В комплексе с другими методами, применяемыми в биологических исследованиях, электронная микроскопия участвует в решении таких актуальных теоретических проблем, как механизм биосинтеза белков, и нуклеиновых кислот в клетке, механизм наследственности (расшифровка генетического кода, изучение первичной и вторичной структуры ДНК и РНК), эволюция и систематика микроорганизмов, их принцип организации и развития, функциональная морфология клетки. Кроме решения теоретических проблем, электронная микроскопия находит самое широкое применение в практике. Благодаря электронному микроскопу совершенствуется морфологическая диагностика заболеваний человека и животных, определяется топография и характер места локализации антигенов, изучается действие лекарственных и дезинфицирующих веществ на клетку и микроорганизмы, а также используется для решения ряда других важных практических задач. [c.211]


    Удерживание в неоднородном электрическом поле белков и нуклеиновых кислот с сохранением их биологической активности свидетельствует о возможной роли этого явления в живой клетке. Общеизвестно, что клеточная стенка неоднородна ио своему составу, а следовательно, и по диэлектрической проницаемости и имеет довольно высокий электрический потенциал [ б, 17, 474]. Мембраны клеточных органелл (митохондрий, хлоропластов) и бактерий содержат молекулярные электрические генераторы [87], причем величина генерируемой трансмембранной разности электрических потенциалов достигает существенных значений— 100--300 мВ. Поэтому вполне резонно допустить существование в клеточных структурах неравномерного неоднородного электрического поля, аналогичного создаваемому нами в эксперименте, с высокой напряженностью и градиентом потенциала, и предположить его влияние на процесс удерживания, локализацию и работу биологически активных соединений, особенно высокомолекулярных. [c.228]

    В последнее время появились также работы, посвященные действию поверхностно-активных веществ на микроорганизмы, изучению связи между строением и функцией ПАВ [181—190]. Как свидетельствуют эти исследования, поверхностно-активные вещества взаимодействуют с клеточной стенкой, изменяя ее проницаемость и вызывая утечку жизненно важных составных частей протоплазмы (различных аминокислот и производных нуклеиновых кислот) вследствие нарушения осмотического равновесия. Поверхностно-активные вещества влияют также на взаимодействие ферментов и на их локализацию внутри клетки. В зависимости от pH среды в присутствии ПАВ наблюдается либо повышение активности ферментов, либо угнетение их каталитического действия. [c.85]

    Поддержание постоянных соотношений между различными компонентами клетки в стационарном состоянии достаточно легко можно осуществить в гомогенной реакционной системе. В клетке, однако, этой тенденции противодействует другой фактор. Клетка имеет определенную геометрию, ибо она окружена стенкой и имеет пространственно разграниченные области ферментативной активности, особую локализацию нуклеиновых кислот и т. д. Когда общее количество вещества растет, поддержание постоянной геометрии становится совершенно несовместимым с сохранением постоянного химического состава, если клетка периодически не делится. Лучше всего это иллюстрирует простой пример. [c.527]

    Нам известны два типа нуклеиновых кислот, которые встречаются во всех клетках и у всех живых организмов. Нуклеиновые кислоты первого типа называются дезоксирибонуклеиновыми кислотами (сокращенно ДНК), а нуклеиновые кислоты второго тина — рибонуклеиновыми кислотами (сокращенно РНК). ДНК отличаются от РНК по составу, химической структуре, по местоположению, или локализации, в клетке и, наконец, по своей биологической роли. [c.39]

    Локализация изотопа в ядре и других субклеточных структурах создает особые условия для повреждения клеток. В клетках печени и костного мозга мы показали связь плутония с нуклеиновыми кислотами и особенно с ДНК и ДНП, что, безусловно, должно иметь большое биологическое значение. [c.116]

    Значительные успехи в изучении метаболизма нуклеиновых кислот и нуклеопротеинов были достигнуты с помощью тяжелого азота и радиоактивного фосфора. Оказалось, что в живых организмах их распад и синтез протекают столь же быстро, как обновление аминокислот и белков. После введения меченого неорганического фосфора в тело мыши уже через час с ним обменивается 70% фосфора рибонуклеиновой кислоты печени. Фосфор дезоксирибонуклеиновой кислоты обменивается гораздо медленнее в печени, но быстро в делящихся клетках. Этим, вероятно, объясняется избирательное накопление радиоактивного фосфора в раковых тканях, которое в ряде работ предлагалось использовать для диагноза и локализации рака. [c.322]

    Появление более тонких методов исследования субклеточных компонентов в первые десятилетия этого века позволило выяснить локализацию обоих типов нуклеиновой кислоты (ДНК и РНК) в клетке. Было обнаружено, что именно ДНК является тем веществом, которое обусловливает то характерное окрашивание части ядра гистологическим красителем, на основании которого эта часть ядра была первоначально названа хроматином . Дальнейшее исследование показало, что ДНК действительно является главной составной частью хромосом, в которых она связана с белком, масса которого в хромосомах в три-четыре раза превышает массу ДНК. В отличие от ДНК, которая обнаруживается главным образом в ядре, основная масса РНК локализована в цитоплазме. Однако небольшая часть клеточной РНК находится в ядре. Она сосредоточена там в ядрышке, которое характеризуется чрезвычайно высокой концентрацией РНК. [c.44]

    Некоторые вирусы содержат только РНК, другие—только ДНК, но клетки бактерий, всех одноклеточных и многоклеточных растений и животных содержат нуклеиновые кислоты обоих типов. ДНК и РНК имеют в клетке различную локализацию. ДНК находится преимущественно в ядре, входит в состав хроматина, сосредоточена в хромосомах. В ядре ДНК вступает в соединения с гистонами и протаминами, образуя нуклеопротеиды. Согласно последним данным, ДНК входит в состав органоидов цитоплазмы, например митохондрий. Основные хранители РНК — ядрышки, находящиеся в ядре, и рибосомы, расположенные в цитоплазме. Кроме того, РНК находится в цитоплазматическом матриксе. [c.45]


    Пуклеопротеины состоят из белков и нуклеиновых кислот. Последние рассматриваются как простетические группы. В природе обнаружено 2 типа нуклеопротеинов, отличающихся друг от друга по составу, размерам и физико-химическим свойствам,— дезоксирибонуклеопротеины (ДНП) и рибонуклеопротеины (РНН). Названия нуклеопротеинов отражают только природу углеводного компонента (пентозы), входящего в состав нуклеиновых кислот. У РНП углевод представлен рибозой, у ДНП—дезоксирибозой. Термин пуклеопротеины связан с названием ядра клетки, однако ДНП и РНП содержатся и в других субклеточных структурах. Следовательно, речь идет о химически индивидуальном классе органических веществ, имеющих своеобразные состав, структуру и функции независимо от локализации в клетке. Доказано, что ДНП преимущественно локализованы в ядре, а РНП —в цитоплазме. В то же время ДНП открыты в митохондриях, а в ядрах и ядрышках обнаружены также высокомолекулярные РНП. [c.86]

    Само название нуклеиновые кислоты (от лат. nu leus — ядро) показывает, что открыты они были как составная часть клеточного ядра, в котором действительно присутствуют оба класса нуклеиновых кислот — ДНК и РНК. Основным местом локализации ДНК являются структуры клеточного ядра — хромосомы, в которых ДНК находится в виде комплексов с белками — дезоксирибонуклеотидов. ДНК ( 1% от общего количества) также обнаружена в митохондриях всех типов эукариотических клеток и в хлоропластах растительных клеток. В структуре ядерной ДНК заложена информация о видовых специфических признаках, которые определяют характер данной клетки и всего организма и передаются по наследству. В цитоплазме клеток имеются значительные количества РНК, участвующие в реализации генетической информации. Важными открытиями в изучении нуклеиновых кислот, удостоенными Нобелевской премии, явились установление пространственной структуры ДНК Дж. Уотсоном, Ф. Криком и М. Уилкинсом, ферментативный синтез в бесклеточной системе биологически активной ДНК, осуществленный А. Корн-бергом и С. Очоа, блестящие исследования М. Ниренберга, Р. Холи и X. Корана, послужившие предпосылкой для расшифровки генетического кода. [c.171]

    В книге проф. Дж. Дэвидсона обширная проблема биохимии нуклеиновых кислот рассматривается вся в целом, почти во всех ее разнообразных аспектах. В пределах сравнительно небольшого объема книги кратко рассмотрены химия нуклеиновых кислот, методы их определения, локализация и роль в клетке, обмен (включая биосинтез), а также их биологическое значение и связь с вирусами. Книга была переведена на русский, французский, польский и японский языки. Ее популярность растет с выходом каждого очередного издания, создаваемого плодовитым пером автора. Эта книга была первой в серии Биохимические монографии , однако ввиду частых публикаций новых ее изданий она никогда не отставала от современного состояния проблемы. Излишне говорить о большом спросе на эту книгу. Достаточно указать, что за 15. лет она выдержала 5 изданий res ipsa loquitur. [c.6]

    Окрашивание нуклеиновых кислот — методические приемы, позволяющие изучать локализацию и содержание нуклеиновых кислот в индивидуальных клетках. Поскольку нуклеиновые кислоты обладают сильнокислыми свойствами, то они характеризуются высоким сродством к основным красителям — толуидиновому синему, целестиновому голубому, метиловому зеленому и пироиину. Тканевые срезы, легко окрашиваемые такими красителями, получили название базофильных. [c.64]

    Полинуклеотиды. В группе полинуклеотидов, или сложных нуклеиновых кислот, различают нуклеиновую кислоту рибозы и нуклеиновую кислоту дезоксирибозы. Они отличаются друг от друга составом, строением, локализацией в клетке и физиологической ролью. Нуклеиновые кислоты полинуклеинового типа из различных животных и растительных клеток и тканей однотипны по своему составу. [c.333]

    Для локализации специфических последовательностей нуклеиновых кислот в хромосомах и клетках используют гибридизацию in situ [47] [c.242]

    Однако большинство клеточных веществ способно к свечению лишь после обработки их специальными красителями (вторичная люминесценция). К таким красителям относятся акридин оранжевый, барбаринсульфат, флоксин, флуоресцин и др. Многие из этих красителей способны избирательно окрашивать отдельные клеточные структуры, что помогает их изучению. Так, акридин оранжевый при известных условиях окрашивает ДНК. в зеленый, а РНК в оранжевый цвет, что широко используется при определении локализации нуклеиновых кислот в растительных и животных клетках. Люминесцентный метод дает возможность изготовить контрастные препараты, удобные для изучения, а также определять функциональное состояние отдельных клеток. [c.8]

    Они образуются, как и сферосомы, из тяжей эндоплазматической сети путем отшнуровывания мельчайших пузырьков. Отличительной их особенностью является явно выраженная реакция на кислую фосфатазу. Очевидно, лизосомная мембрана состоит из веществ, устойчивых к действию гидролаз, что служит необходимым условием для локализации посторонних продуктов, проникающих в клетку. Повреждение мембран лизосом может вызвать лизис фосфорных эфиров, нуклеиновых кислот, белков, мукополисахаридов и сложных эфиров серной кислоты. В связи с этим органеллы и были названы лизосомами. Они принимают активное участие в расщеплении поступающих в клетку в процессе фагоцитоза или пиноцитоза питательных веществ. Вместе с тем лизосомы способны переварить саму клетку, в которой они находятся, но этому препятствует их мембрана. Нарушение целостности мембран лизосом влечет за собой повреждение окружающей цитоплазмы и органелл. [c.46]

    Множество биохимических (Air, 1979) и электронно-микроскопических (Evenson, 1977) методов было использовано для анализа вирусных геномов дикого, дефектного и спасенного типов. Эти методы включают спасение дикого типа с дефектным и спасенным по отношению к рестрикционной эндонуклеазе вирусом или другим резанным эндонуклеазой фрагментам, гибридизацию нуклеиновых кислот, картирование гетеродуплекса, R-петли, секвенирование ДНК. С помощью таких методов можно определить локализацию делеции, замещения, инверсии, дополнения и т. д. в вирусных геномах. Замещенные последовательности клетки хозяина которые предположи- [c.195]

    Ограниченный протеолиз белков в клетке — необратимый регуляторный процесс. Он играет важную роль в секреции белков или дифференцпровке клеток, так как память о прошедшей модификации сохраняется на все время жизни данного белка (несколько часов, дней или даже месяцев). Малообратимые процессы химической модификации белков (метилирование, гидро- ксилирование и др.) могут нести информацию о продолжительности жизни белка (новый или.старый), определять его локализацию в клетке, влиять на взаимодей--ствие с другими белками или нуклеиновыми кислотами [c.50]


Смотреть страницы где упоминается термин Нуклеиновые кислоты локализация в клетке: [c.63]    [c.242]    [c.299]    [c.61]    [c.116]    [c.214]    [c.24]    [c.155]    [c.296]    [c.213]    [c.242]    [c.9]   
Основы биологической химии (1970) -- [ c.131 , c.133 ]




ПОИСК





Смотрите так же термины и статьи:

Нуклеиновые кислоты



© 2025 chem21.info Реклама на сайте