Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Защита конструкция анода

Рис. 257. Электрическая схема катодной защиты ЯГ — источник постоянного тока — катодная поляризуемость защищаемой конструкции анодная поляризуемость вспомогательного анода сопротивления пр, пра — сопротивление соединительных проводов — то же, защищаемой конструкции — то же, защитного изолирующего покрытия — то же, электролита между защищаемой конструкцией и вспомогательным анодом — то же, вспомогательно-Цф а Рис. 257. <a href="/info/1791366">Электрическая схема катодной защиты</a> ЯГ — <a href="/info/1382132">источник постоянного тока</a> — катодная поляризуемость защищаемой <a href="/info/1515352">конструкции анодная</a> поляризуемость вспомогательного анода сопротивления пр, пра — <a href="/info/938171">сопротивление соединительных проводов</a> — то же, защищаемой конструкции — то же, <a href="/info/806386">защитного изолирующего</a> покрытия — то же, электролита между защищаемой конструкцией и вспомогательным анодом — то же, вспомогательно-Цф а

    Для защиты железных конструкций от коррозии наиболее часто применяют металлическое покрытие из цинка (оцинкованное железо, жесть) или олова (луженое железо, белая жесть). В первом случае цинк является более активным восстановителем, чем железо, так как Ре Ге2+ = = -0,440 В. Поэтому при нарушении покрытия в коррозионных микрогальванических элементах цинк будет анодом и разрушаться, а железо катодом — местом, для осуществления процессов восстановления окислителей среды. Для описания процессов в этой системе на рис. 38.7 следует слева взять более активный металл — цинк (вместо железа), а справа — менее активный — железо (вместо меди) и заменить ионы железа в среде на ионы цинка. Поскольку в данном процессе цинк является анодом, то цинковое покрытие железа называется анодным покрытием. [c.692]

    Для предотвращения коррозии металлических конструкций, находящихся в почве, таких как металлические трубопроводы, резервуары, сваи, опоры, применяется электрохимическая катодная защита. Ее осуществляют путем подсоединения металлической конструкции к отрицательному полюсу внешнего источника постоянного тока, положительный полюс присоединяют к заземленному металлическому электроду, который постепенно разрушается. При этом на поверхности защищаемого металла протекают восстановительные процессы, а окисляется материал анода. Другой метод электрохимической защиты основан на присоединении защищаемого металла к электроду, изготовленному из более активного металла. При защите стальных конструкций применяют цинковые пластины. В этой гальванической паре цинк будет разрушаться и защищать сталь от коррозии. Отсюда и название этого метода —метод протектора (от лат. рго ес/ог —покровитель). Например, для защиты от коррозии к корпусам морских кораблей прикрепляют цинковые пластины. [c.149]

    Один из наиболее распространенных методов защиты от коррозии состоит в катодной поляризации металла. Из рис. 92 видно, что при отклонении потенциала металла в отрицательную сторону от скорость анодного растворения металла уменьшается, а скорость выделения водорода увеличивается, т. е. катодная поляризация уменьшает скорость коррозии. Катодную поляризацию можно создать от внешнего источника тока. Этот метод называют методом катодной защиты. Можно также соединить основной металл с другим металлом (протектором), который в ряду напряжений расположен левее. Часто для протекторной защиты используют магний или алюминий, при помощи которых защищают рельсы, мачты и другие конструкции. Протектор постепенно растворяется и его надо периодически заменять. Примером протекторной защиты служит также цинкование железных изделий. Железо является катодом локального элемента, а цинк—анодом. Следовательно, локальные токи вызывают коррозию покрытия, тогда как железо оказывается защищенным от коррозии. [c.214]


    Растворимые аноды. Использовать такие аноды начали со времен Фарадея. Основные Преимущества этой системы — простота и минимальная потребность в контроле. Для защиты конструкций, погружаемых в морскую воду, применяют протекторы из цинка, алюминия и магния. Характеристики некоторых распространенных протекторов представлены в табл. 69. [c.171]

    В агрессивных растворах, в морской воде, в почве применяют электрохимический метод защиты. Одной из разновидностей этого метода является метод протекторной защиты, который применяют в нейтральных средах. К стальной конструк-дии 1 присоединяют пластины из чистого цинка 2 или сплава цинка с алюминием (рис. 92). При этом образуются макро-гальванические элементы, в которых цинк (или сплав цинка) выполняет функцию анода, а конструкция, которую защищают от коррозии, становится катодом. При этом цинковые пластины (протектор) растворяются, а коррозия конструкции (катода) вследствие сдвига электродного потенциала в более отрицательную область прекращается или сильно уменьшается. Другая разновидность электрохимического метода — катодная защита. Конструкцию 1 для защиты от коррозии присоединяют к отрицательному полюсу генератора постоянного тока, положительный полюс — к куску железа 2 (рис. 93). Это сдвигает потенциал защищаемой конструкции в область более отрицательных значений, что приводит к сильному торможению коррозии. [c.376]

    Для определения напряжения Е , необходимого для защиты конструкции, надо добавить к Уз значение анодной поляризации вспомогательного анода АУд при данной силе тока и произведение последней на сумму всех остальных сопротивлений в цепи защиты и вычесть начальный потенциал конструкции  [c.364]

    Один магниевый анод может обеспечивать в течение двух лет защиту от коррозионного разрушения 100— 110 м стальной поверхности, погруженной в воду, или 200 м поверхности, находящейся в донном грунте. Одним из основных факторов, определяющих надежность действия катодной защиты морских сооружений, является правильный выбор материала п конструкции анодов. [c.200]

    Конструкции анодов для внутренней защиты от коррозии [c.7]

    Сплав свинца с серебром предназначается преимущественно для применения в морской воде и в средах, содержащих большие количества хлоридов. Для применения на судах и для защиты подводных стальных конструкций аноды из сплава свинца с серебром особенно эффективны, поскольку они к тому же сравнительно нечувствительны к механическим нагрузкам. Сплав, первоначально предложенный Морганом [8, 9], содержит 1 % и 6 %8Ь (остальное — свинец). В табл. 8.2 этот материал обозначен как сплав 1. Имеется и другой сплав с 2 % [c.202]

    Станция катодной защиты — это устройство для катодной поляризации защищаемых конструкций с помощью внешнего тока. Они представляют собой комплекс, состоящий из источника постоянного тока с двумя основными линиями для поляризации анодов и для катодной защиты конструкции. Линии контроля потенциалов и защитного заземления являются вспомогательными. К станции относятся также электроизмерительные приборы, защита от атмосферного электричества, автоматическое регулирование разности потенциалов конструкция — земля в местах дренажа, телеконтроль, защита от попадания под напряжение обслуживающего персонала, приборы для измерения скорости коррозии и др. [c.67]

    Свинец и его низколегированные сплавы с сурьмой, висмутом или мышьяком, а также содержащие иногда присадку серебра, рекомендуют и часто применяют в качестве малорастворимых анодов, для электрохимической обработки металлических деталей (например, для нанесения гальванических покрытий), и особенно для электрохимической катодной защиты конструкций в морской воде и в подземных условиях [51, 226]. [c.290]

    Для осуществления протекторной защиты к конструкции присоединяют протектор, обычно в виде пластины или цилиндра, который в данной среде обладает более электроотрицательным потенциалом, чем любой участок защищаемой конструкции. Схематически такая защита (рис. 201) сводится к превращению электродом Я анодных участков А данной конструкции, состоящей в простейшем случае из короткозамкнутой системы двух электродов А—К, в катодные. В этом случае анод посылает электроны во внешнюю цепь меньше или даже сам начинает их принимать от присоединенного протектора. [c.301]

    Магний. С появлением протекторов из высокочистого цинка и в последнее время из тройных алюминиевых сплавов магниевые протекторы стали значительно реже применяться для защиты конструкций в морской воде. Однако в некоторых специальных случаях они используются по-прежнему. Наиболее предпочтительным является сплав Mg—6А1—Э2п, в котором должно быть менее 0,003% Ре и N1 и менее 0,10 % Си. Более высокое по сравнению с другими типами анодов значение потенциала и меньшая плотность делают магниевые протекторы в некоторых случаях более предпочтительными даже прн 50 %-ном коэффициенте полезного использования сплава. Например, разработан 90-кг протектор, способный поддерживать силу тока [c.174]


    Антикоррозионные металлич. материалы могут также использоваться при изготовлении элементов систем электрохим. защиты (катоды, аноды и др.). Сплавы Zn, А1, Мп с разл. легирующими элементами применяют в качестве материалов протекторов (анодов), защищающих от коррозии стальные конструкции. При использовании для защиты внеш. тока материалами для вспомогат. электродов (катодов или анодов) служат титан с платиновым покрытием, железокремнистые сплавы и графит. [c.479]

    Катодную защиту широко применяют для защиты от морской коррозии. Гражданские суда защищают с помощью А1-, Mg- или 2п-протекторных анодов, к-рыс размещают вдоль корпуса и вблизи винтов и рулей. Станции катодной защиты используют в тех случаях, когда требуется отключение защиты для устранения электрич. поля корабля, при этом потенциал обычно контролируют по хлорсеребряным электродам сравнения (х. с. э.). Критерием достаточности защиты является значение потенциала -0,75 В по х. с.э. или сдвиг от потенциала коррозии, составляющий 0,3 В (на практике обычно 0,05-0,2 В). Существуют автоматич. станции катодной защиты, расположенные на судне либо на берегу (при стоянке или ремонте). Аноды обычно изготовлены из платинированного титана, линейной или круглой формы, с около-анодными непроводящими экранами для улучшения распределения потенциала и плотности тока вдоль корпуса судна. Конструкция анодов обеспечивает их защиту от мех. повреждений (напр., в ледовых условиях). [c.458]

    ЗАЩИТА МЕТАЛЛООКИСНЫХ АНОДОВ И ТОКОНЕСУЩИХ ТИТАНОВЫХ КОНСТРУКЦИЙ ОТ КОРРОЗИОННЫХ РАЗРУШЕНИЙ [c.22]

    Конструкции анодов. При выборе конструкции анодов учитывают особенности и условия эксплуатации защищаемого объекта, материал апода, значение защитного тока и срока службы защиты. Кроме этого, при [c.72]

    При осуществлении защиты конструкции за счет подачи тока извне (катодная защита) отрицательный полюс источника постоянного тока должен быть соединен проводником с защищаемой конструкцией, а положительный полюс — со вспомогательным электродом (анодом), контактируемым с агрессивной средой. [c.299]

    Цинковые аноды должны помещаться в оболочку из гипса и бентонита, смешанных в равных пропорциях. Открытая конструкция анода уменьшает риск блокировки тока продуктами коррозии, однако какая бы ни применялась оболочка, невозможно устранить образование пленки, препятствующей прохождению тока на обычных цинковых анодах, содержащих примеси. Только с некоторого времени, когда стали применять цинковые аноды специального состава, такое применение цинка для катодной защиты получило значительный интерес. [c.267]

    В промышленности часто применяют так называемую протекторную защиту, пригодную в тех случаях, когда защищаемая конструкция (корпус судна, подземный трубопровод) находится в среде электролита (морская, почвенная вода). Для осуществления протекторной защиты используют специальный анод — протектор (например, старые железные детали, алюминиевые сплавы и т. д.) с более отрицательным потенциалом, чем потенциал металла защищаемой конструкции. [c.365]

Рис. 76. Схема анодной защиты химического аппарата с центральным располо-жеЕшем катода I - источник питания (регулятор потенциала) 2 - защищаемая конструкция (анод) 3 - катод 4 - электрод сравнения Рис. 76. Схема <a href="/info/1604358">анодной защиты химического</a> аппарата с центральным располо-жеЕшем катода I - <a href="/info/21321">источник питания</a> (<a href="/info/525637">регулятор потенциала</a>) 2 - защищаемая конструкция (анод) 3 - катод 4 - электрод сравнения
    Протекторная защита и электрозащита. Протекторная защита применяется в тех случаях, когда защищается конструкция (подземный трубопровод, корпус судна), находящаяся в среде электролита (морская вода, подземные, почвенные воды и т. д.). Сущность ее заключается в том, что конструкцию соединяют с протектором — более активным металлом, чем металл защищаемой конструкции. В качестве протектора при защите стальных изделий обычно используют магний, алюминий, цинк и их сплавы. В процессе коррозии протектор служит анодом и разрушается, тем самым предохраняя от разрушения конструкцию (рис. 69). По мере разрушения протекторов их заменяют новыми. [c.254]

Рис. 46. Схема анодной защиты химического аппарата с центрааьным расположением катода 1 - источник питания (регулятор потенциала) 2 - зашищае.мая конструкция (анод) 3-катод - электрод сравнения Рис. 46. Схема <a href="/info/1604358">анодной защиты химического</a> аппарата с центрааьным <a href="/info/1534408">расположением катода</a> 1 - <a href="/info/21321">источник питания</a> (<a href="/info/525637">регулятор потенциала</a>) 2 - зашищае.мая конструкция (анод) 3-катод - электрод сравнения
    Использование магниевых анодов, удовлетворяющих спецификации MIL-A-2I412A, цинковых анодов, удовлетворяющих спецификации MIL-A-18001H, или алюминиевых анодов с подходящими свойствами позволяет легко обеспечить надежную катодную защиту конструкций в морской воде. Удовлетворительными электрохимическими свойствами обладают протекторы из сплава алюминия с небольшими добавками цинка и ртути, однако токоотдача тагах анодов может существенно снижаться в анаэробных донных отложениях, покрытых водой. [c.204]

    В случае необычно высокого сопротивления на вспомогательных анодах иногда применяются ламповые выпрямители. Мотор-генераторы используются мало. Генераторы, работающие на газе, употребляются на некоторых длинных трубопроводах природного газа, и топливом для них служит этот же газ. Применяются и генераторы, работающие от ветродвигателей, если местность этому благоприятствует. Иногда они сочетаются с аккумуляторными батареями, которые работают в безветре-ную погоду. Но чаще в периоды безветрия защита конструкции держится на поляризации. [c.977]

    На эффективность электрохимической защиты оказывает также влияние расположение анодов. Они должны быть расположены так, чтобы на новерхиости защищаемой конструкции был обеспечен ток равномерной плотности. [c.305]

    Протекторная защита отличается от катодной зани ты тем, что для ее осуществления используется специальный аиод — протектор, в качестве которого применяют металл более активный, чем металл защищаемой конструкции (алюминий, циик). Протектор Б (рис. 45) соединяют с защищаемой конструкцией А проводииком электрического тока В. В ироцессс коррозии протектор служит анодом и разрушается, тем самым предохраняя от разруплс1 ия защищаемую конструкцию. [c.244]

    К электрохгшическим методам защиты металлов относятся катодная запщ-та, протекторная защита и др. При катодной защите защищаемая конструкция или деталь присоединяется к отрицательному полюсу источника электрической энергии и становится катодом. В качестве анодов используются куски железа или специально изготовленные сплавы. При надлежащей силе тока в цепи на защищаемом изделии происходит восстановление окислителя, процесс же окисления претерпевает вещество анода. [c.692]

    Протекторная защита заключается в образовании макрогальвани-ческой пары, в которой защищаемый металл играет роль катодного участка, а анодом (протектором) служит более активный металл или сплав. Обычно в качестве протектора используют металлы с низким потенциалом алюминий, магний, цинк, их сплавы. Протекторы наклепывают или соединяют металлическим проводом с защищаемой конструкцией. Эффективность протекторной защиты зависит от электропроводности среды, разности потенциалов между протекторами и защищаемой конструкцией и от способа размещения протекторов. [c.227]

    Второй электрод 3 (анодное заземление) соединяется с положительным полюсом источника тока и действует в качестве анода. Катодная защита возможна только в том случае, когда защищаемая конструкция и анодное заземление находятся в электрическом и электролитическом контакте первое достигается с помошью металлических проводников, а второе благодаря наличию электролитической среды 5 (грунт), в которую нагружена защищаемая конструкция и анодное заземление. [c.5]

    Присоедннение.м защищаемой конструкции к электроду (аноду), имеющему в дпмной среде достаточно отрицательный потенциал (рис. 41). Этот вид защиты [c.66]


Смотреть страницы где упоминается термин Защита конструкция анода: [c.37]    [c.19]    [c.560]    [c.196]    [c.298]    [c.299]    [c.303]    [c.257]   
Коррозия и защита от коррозии (1966) -- [ c.803 ]




ПОИСК





Смотрите так же термины и статьи:

Аноды



© 2025 chem21.info Реклама на сайте