Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Амперометрическое титрование по току продукта реакции

    Какой вид имеют кривые амперометрического титрования с одним поляризуемым электродом а) при титровании по току определяемого вещества б) при титровании по току продукта реакции в) если определяемое вещество и титрант восстанавливаются в одной и той же области потенциалов Привести примеры, используя справочные данные. [c.258]

    Если ни титрант, ни определяемое вещество, ни продукт реакции не являются электрохимически активными, для определения конечной точки титрования следует воспользоваться амперометрическим индикатором. В качестве последнего применяют вещества, которые восстанавливаются или окисляются на электроде, и взаимодействуют с титрантом настолько слабее, чем определяемое вещество, что концентрация индикатора в растворе начинает изменяться только после того, как будет оттитровано все определяемое вещество. Примером амперометрического индикатора может служить 2п , который применяется при комплексонометрическом титровании ионов Са . На электроде устанавливают потенциал, при котором ионы могут восстанавливаться, а ионы Са не могут. Во время титрования сначала связывается в комплекс кальций. После того, как ионы Са будут практически полностью оттитрованы, титрант будет взаимодействовать с При этом ток восстановления начнет уменьшаться. [c.511]


    Важной особенностью амперометрического титрования, выгодно отличающей его от полярографических определений, является следующее если для полярографического определения необходимо, чтобы сам определяемый ион давал электродную реакцию, т. е. восстанавливался (или окислялся) на электроде, то для амперометрического титрования это совершенно не обязательно. Достаточно, чтобы на электроде мог восстанавливаться или окисляться хотя бы один из двух участвующих в титровании реагентов или продукт этой реакции. Если электродную реакцию дает титруемое вещество, то оно с самого начала титрования даст определенный диффузионный ток (при соответственно подобранном напряжении), который во время титрования будет постепенно понижаться вследствие связывания этого вещества титрующим раствором в осадок, в малодиссоциированное соединение или переведения его в другую форму валентности, уже не дающую электродной реакции при данном потенциале. В таком случае кривая титрования будет иметь вид, изображенный на рис. 2 (форма а). [c.15]

    Наконец, возможны и такие случаи амперометрического титрования, при которых измеряется диффузионный ток не определяемого иона и не иона, находящегося в титрующем растворе, а ток продукта химической реакции, протекающей между ними. Например, при титровании мышьяка (V) раствором иодида калия в определенных условиях возможно только восстановление свободного иода, образующегося при взаимодействии мышьяка и иодида калия по реакции  [c.17]

    Адсорбция продуктов электродной реакции и реакций, протекающих в растворе. В амперометрическом титровании можно пользоваться феррицианидом калия (красной кровяной солью), способным восстанавливаться на платиновом электроде и образующим малорастворимые соединения е некоторыми ионами. Казалось бы, что после конечной точки ток должен возрастать в результате восстановления избыточных ионов феррицианида. Однако это далеко не всегда так. В присутствии ионов никеля и свинца возрастания тока вообще не наблюдается, а в присутствии ионов цинка, кобальта и ртути (II) наблюдается максимум, характерный для замедленных реакций, сопровождающихся образованием промежуточных соединений. Отсутствие электродной реакции феррицианида в присутствии никеля и свинца объясняется следующим растворимость феррицианидов этих элементов относительно велика, больше, чем растворимость феррицианидов цинка и других упомянутых выше металлов. Следовательно, в растворе будет [c.57]


    Если требуется разработать метод амперометрического титрования с платиновым электродом, то прежде всего необходимо снять полярограмму либо того вещества, которое находится в исследуемом растворе, если титрование предполагается проводить по току этого вещества, либо полярограмму раствора, которым предполагается проводить титрование, если определяемое вещество не дает электродной реакции. В некоторых случаях, как будет показано ниже, бывает необходимо снять также полярограмму продуктов электродной реакции. Полярограмму (или, как часто говорят, вольт-амперную кривую) снимают обычно на том фоне, на котором будут проводить титрование. [c.69]

    При амперометрическом титровании обычно можно не делать большого количества отсчетов по гальванометру и бюретке. Часто наблюдается прямолинейная зависимость между силой тока и объемом прибавленного рабочего раствора, и график можно строить по двум-трем отсчетам до и после точки эквивалентности. Абсцисса точки пересечения проведенных прямых указывает объем израсходованного на титрование рабочего раствора. Рассмотренная особенность представляет большое преимущество, в частности, при титровании разбавленных растворов, когда обычный индикаторный метод дает большие погрешности. В последнем случае ошибка обусловлена, главным образом, различными побочными процессами вблизи точки эквивалентности, например гидролиз продукта реакции делает переход окраски индикатора нечетким, чрезмерная растворимость осадков также вносит большую ошибку в результаты определения. [c.260]

    Кулонометрию можно рассматривать как некоторую аналогию метода титрования, при котором исследуемое вещество количественно превращают в продукт реакции не путем добавления титранта, а путем пропускания определенного электрического заряда Q. Как и при титровании, здесь возникает задача определения конечной точки пропускания тока. С этой целью кулонометрию сочетают с другими из описанных электрохимических методов соответственно говорят о кондуктометрической, потенциометрической или о амперометрической кулонометрии. [c.387]

    В основе спектрофотометрического (фотометрического) метода индикации к. т. т. в кулонометрическом титровании с контролируемым током лежит определенная зависимость оптической плотности раствора от концентрации либо определяемого вещества, либо титранта, либо продуктов реакции. Для определения к. т. т. строят график зависимости оптической плотности от продолжительности генерации титранта (либо от Q, прошедшего через электрохимическую ячейку). По сравнению с различными вариантами потенциометрии спектрофотометрический метод индикации к. т, т. (как и амперометрический и некоторые другие) обладает тем преимуществом, что в этом методе аналитический [c.48]

    В этом виде полярографии измеряется ток при определенном потенциале, находящемся в области плато предельного диффузионного тока определяемого вещества. Часто к этому методу относят титрование с амперометрическим определением конечной точки — амперометрическое титрование. Форма кривых амперометрического титрования зависит от типа реакции титрования. Если титруемое вещество является электрохимически активным, а титрант нет, то ток с увеличением объема добавленного титранта уменьшается почти до нуля (в точке эквивалентности) и затем остается постоянным при дальнейшем добавлении титранта. Если электрохимически активен титрант, а титруемое вещество нет, то ток остается близким к нулю до точки эквивалентности, после которой он начинает увеличиваться пропорционально концентрации добавляемого титранта. Если оба компонента реакции электрохимически активны, а продукты реакции нет, то получается У-образная кривая с минимумом, соответствующим точке эквивалентности. Метод титрования с индикатором применяется в тех случаях, когда ни определяемое вещество, ни титрант не дают в условиях определения полярографических волн или их получение по тем или иным причинам затруднительно. В этом случае к раствору титруемого вещества добавляется индикатор, дающий полярографическую волну и вступающий в реакцию с титрантом после того, как прореагирует определяемое вещество. В процессе титрования ток вначале (до связывания всего титруемого вещества) будет оставаться постоянным, а затем он начинает уменьшаться до некоторой минимальной величины, и дальнейшее добавление титранта не будет влиять на ток. Кривая этого вида титрования имеет форму волны и перегиб на ней указывает на достижение точки эквивалентности. Эта точка определяется как середина перегиба кривой титрования. [c.24]

    Вид кривой амперометрического титрования зависит от того, какой компонент реакции титрования вступает в электродную реакцию — определяемое вещество, титрант или продукт реакции. Например, если при титровании серебра иодидом используется процесс восстановления серебра на платиновом вращающемся катоде, кривая титрования имеет вид, изображенный на рис. 10.10. Если в этом титровании используется процесс анодного окисления иодид-иона (титранта), кривая титрования имеет вид, изображенный на рис. 10.11. В первом случае в ходе титрования сила тока уменьшается, так как концентрация серебра в растворе падает в результате образования осадка Agi, а после достижения точки эквивалентности остается постоянной. Во втором случае, когда используется анодное окисление иодид-иона, концентрация его после точки эквивалентности увеличивается и это отражается в возрастании силы тока. Точка эквивалентности в обоих случаях находится графически как точка пересечения соответствующих прямых. [c.233]


    На рис. 10.12 приведена кривая амперометрического титрования по диффузионному току, обусловленному концентрацией образовавшегося продукта реакции титрования. Этот случай реализуется, например, при титровании мышьяковой кислоты иодидом калия  [c.233]

    Примером может служить амперометрическое титрование четырехвалентного ванадия сульфатом церия при потенциале +0,2 в [21]. При этом потенциале реактив — четырехвалентный церий и продукт реакции — ванадат-ион восстанавливаются на платиновом электроде. Кривая титрования приведена на рис. 60. По мере титрования в растворе возрастает концентрация V (V) (отрезок АВ), после точки эквивалентности В по мере добавления избытка сульфата церия ток возрастает значительно более резко (отрезок ВС). [c.157]

    Одной из особенностей амперометрических определений, основанных на реакциях окисления — восстановления, является отсутствие остаточного тока. Как правило, в момент эквивалентности ток равен нулю. Исключения имеют место только в тех случаях, когда при выбранном потенциале идет побочный электродный процесс какого-либо компонента раствора или возникает слабовыраженная электродная реакция продуктов реакции. Если эти явления не мешают получению кривой титрования с отчетливым изломом в момент эквивалентности, то ими пренебрегают. [c.158]

    В кислой среде бихромат калия количественно окисляет двухвалентное железо до трехвалентного. Эта реакция мо- ет быть использована как для амперометрического определения железа (II), так и для определения хрома (VI). Оба компонента вступают в электродные реакции двухвалентное железо окисляется, а бихромат восстанавливается на платиновом электроде. Однако проводить титрование по току бихромата нельзя, так как на электроде восстанавливается также продукт реакции — трехвалентное железо. [c.262]

    Зависимость величины предельного тока от количества добавленного реактива представляет собой типичную кривую амперометрического титрования. После полного осаждения цинка ток остается постоянным (рис. 6.34а). Для построения кривой титрования достаточно иметь по 3—4 точки для каждой ветви кривой. Точку эквивалентности находят экстраполяцией. Метод амперометрического титрования отличает от полярографического то, что в полярографическом методе анализа сам определяемый ион должен восстанавливаться (или окисляться) на электроде. Для метода амперометрического титрования это не является обязательным достаточно, чтобы на электроде мог восстанавливаться (или окисляться) хотя бы один из двух участвующих в титровании реагентов или продукт их реакции, т.е. электроактивным может бьггь определяемое вещество, титрант или образующийся продукт. Для проведения метода амперометрического титрования необходимо установить на индикаторном электроде потенциал, отвечающий области диффузионного тока того вещества, которое участвует в электродном процессе и концентрация которого изменяется в процессе титрования. Для этой цели можно использовать реакции осаждения (например, титрование цинка ферроцианидом калия), реакции окисления - восстановления (например, титрование ванадата солью Мора) и реак- [c.765]

    Необходимым условием для применения метода амперометрического титрования является предварительное полярографическое исследование реагирующих веществ, а иногда и продуктов реакции. Для тгггрования выбирают потенциал индикаторного электрода, который соответствует области диффузионного тока иона, дающего электродную реакцию. В этом случае прямолинейный ход кривой титрования сохраняется в широких пределах концентрации. Если же потенциал не соответствует области диффузионного тока, то на кривой титрования появляется загиб , свидетельствующий о том, что прямолинейная зависимость /д = кс не выдерживается. Если реакция амперометрического титрования протекает по схеме А + В = АВ, то возможны следующие случаи  [c.765]

    Амперометрическое титрование можно проводить даже в том случае, если ни одно из веществ, участвующих в реакции, и ни один из продуктов реакции между ними не дает электродной реакции. В этом случае титрование возможно по так называемому индикаторному методу, предложенному Рингбомом и Вилькманом. Этот метод заключается в следующем если требуется определить ион, не дающий электродной реакции, при помощи иона, также не способного ни восстанавливаться, ни окисляться на электроде, то к исследуемому раствору добавляют небольшое количество такого вещества, которое было бы способно давать электродную реакцию и, кроме того, взаимодействовало бы с тем же реактивом, но лишь после того, как закончится реакция с определяемым ионом. Примером является разработанное Ю. И. Усатенко и Г. Е. Беклешо-вой . 3 определение алюминия, бериллия и циркония при помощи титрования раствором фторида калия в присутствии индикатора — трехвалентного железа. Алюминий, бериллий и цирконий образуют более прочные фториды, чем железо, и поэтому реагируют с фторид-ионом в первую очередь когда же они будут практически полностью связаны фторидом, последний начнет реагировать с железом (И1). При этом величина силы тока, обусловленная присутствием железа (П1), начнет уменьшаться, и кривая титрования будет иметь форму, изображенную на рис. 3. Четкость подобной кривой титрования определяется тем, в какой мере железо (П1) соединяется с фторидом в данной среде при реакции последнего с определяемым ионом. [c.18]

    Для амперометрического титрования меди (И) предложен диэтилдитиокарбамат, приемы применения которого впоследствии были развиты Ю. И. Усатенко и Ф. М. Тулюпой и практически использованы В. И. Лотаревой для определения меди в ряде промышленных продуктов. Диэтилдитиокарбамат окисляется на платиновом электроде, следовательно, титрование возможно по току его окисления после крнечной точки при потенциале около +0,8 в (Нас. КЭ) на различных фонах — ацетатном, хлоридном, тартрат-ном при pH от 4 до 7. Интересно, что в присутствии свинца после конечной точки наблюдается резкое возрастание силы тока, обусловленное тем, что комплексное соединение свинца с диэтилдитио-карбаматом, обладающее меньшей прочностью, чем такое же соединение меди, и образующееся, следовательно. После окончания реакции диэтилдитиокарбамата с медью, окисляется на электроде с большей скоростью, чем диэтилдитиокарбамат. Это позволяет титровать медь, а также ртуть (И) в присутствии многих других ионов, соединения которых с диэтилдитиокарбаматом еще менее прочны, чем соответствующее соединение свинца. [c.255]

    Как будет изложено в гл. 13, амперометрическое титрование проводят, погружая два электрода в титруемый раствор обычно оди электрод является микроэлектродом (часто ртутный капающий электрод), а другой — подходящий (неполяризуемый) электрод оравиения. На микроэлектрод налагают какой-то предварительно выбранный потенциал отно сительно электрода сравиепия и строят график зависимости силы тока (обычно в микроамперах), который протекает в цепи вследствие восстановления или окисления реагирующих компонентов-или продукта их реакции, от о бъема прибавленного титранта. По изменению силы тока судят об изменении концентрации веществ в растворе. Как показано на рис. 13-9, кривая амперометрического титрования состоит из двух прямых линий, точку эквивалентности находят как точку пересечения этих прямых. В табл. 13-3 приведены некоторые типичные примеры комплексометрических титрований, которые могут быть осуществлены амперометрическим методом. [c.204]

    Классификация электрохимических методов анализа основана на типах проводимых измерений и способах использования методов в аналитических целях. Простейшим и, вероятно, наиболее старым методом является использование тока в качестве реагента для получения продуктов электролиза, которые либо взвешивают, как при электровесовом определении меди, либо измеряют объемы, как в газовой купонометрии. Действительно, избирательность электролиза обеспечивает полную эффективность разделения либо при удалении мешающих элементов, либо при предварительном концентрировании. Электрические измерения можно использовать для контроля неэлектрохимических реакций. Так, измерение основных электрических параметров — напряжения, сопротивления и силы тока — применяют в потенциометрическом, кондуктометрическом и амперометрическом титровании соответственно. [c.279]

    Для определения этакридина лактата предложен также метод амперометрического титрования раствором хлорида иода на вращ,аюш,емся платиновом электроде без наложения внешнего напряжения по току I+, основанный на реакции замещения с образованием моноиод-замещенного продукта. [c.135]


Смотреть страницы где упоминается термин Амперометрическое титрование по току продукта реакции: [c.206]    [c.186]   
Теоретические основы физико-химических методов анализа (1979) -- [ c.134 ]




ПОИСК





Смотрите так же термины и статьи:

Амперометрическое титровани

Амперометрическое титрование

Продукты реакции

Реакции титрования



© 2024 chem21.info Реклама на сайте