Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Магнитные единицы измерения

    Единица измерения магнитной индукции - тесла [c.329]

Таблица 1. Электрические и магнитные единицы измерений Таблица 1. Электрические и <a href="/info/671743">магнитные единицы</a> измерений

    Магнитодвижущая (намагничивающая) сила Р - величина, которая характеризует намагничивающее действие электрического тока. Если магнитный контур замкнут, то магнитодвижущая сила (МДС) равна Р = Ш, т.е. произведению тока I в обмотке на ее число витков (рис. 1.27). Единица измерения МДС - ампер-виток. [c.248]

    При этом сила направлена перпендикулярно плоскости, в которой находятся проводник и вектор индукции, в соответствии с известным из физики правилом левой руки (если расположить левую руку так, чтобы магнитное поле входило в ладонь, а пальцы направить вдоль направления тока, то отогнутый большой палец укажет направление силы). Единица измерения магнитной индукции в системе единиц СИ — тесла (Тл). [c.87]

    Электрические и магнитные единицы измерения [c.587]

    В качестве единицы измерения магнитного момента выбран ядерный магнетон Мс). [c.317]

    Единица измерения магнитных моментов атомов магнетон Бо-ра М В=-2 - В СИ рв = 9,273,10-2 Дж/м. Значения Мг и М  [c.125]

    В качестве единицы измерения магнитного момента, обусловленного моментом импульса электронов, принято использовать магнетон Бора.  [c.89]

    Для измерения электрических и магнитных единиц ГОСТом 8033-56 рекомендована абсолютная практическая система единиц МКСА. Она соответствует системе СИ и в ней используются общепринятые электрические и магнитные единицы (ампер, вольт, ом, кулон, фарада, генри, вебер). Система дана для рационализированной формы уравнений электромагнитного поля, вследствие чего из наиболее важных и часто применяемых уравнений этого поля исключается множитель 4я. При [c.587]

    На основании этих зависимостей создана энергетическая система световых единиц, в которой специфические световые измерения увязываются с единицами измерения абсолютной системы МКС. Эта система охватывает всю среднюю область спектра электро.магнитных излучений, включающую инфракрасные излучения с длинами волн от 0,34 мм до 0.77 мк, видимые излучения — от 0,77 до 0,38 мк и ультрафиолетовые излучения — от 0,38 до 0,1 мк. Наиболее важные единицы измерения энергетической фотометрии следующие  [c.598]

    ОПРЕДЕЛЕНИЯ, ЕДИНИЦЫ ИЗМЕРЕНИЯ МАГНИТНЫХ ВЕЛИЧИН, ПРИМЕНЯЕМЫХ ПРИ МАГНИТНОМ КОНТРОЛЕ [c.229]

    ОПРЕДЕЛЕНИЕ, ЕДИНИЦЫ ИЗМЕРЕНИЯ МАГНИТНЫХ ВЕЛИЧИН [c.231]

    Абсолютная магнитная проницаемость Ра характеризует способность материала намагничиваться. Единица измерения - генри на метр [Гн/м = м кг / (с А )]. [c.235]

    Для перевода магнитных величин значения в единицах измерения, указанных в строках табл. П1, следует умножить на соответствующий коэффициент для получения значения в требуемых единицах измерения, приведенных в столбцах табл. П1. [c.537]


    В табл. 1.18 приведены единицы измерения электрических и магнитных величин в четырех системах МКСА, СГСЭ, СГСМ, СГС. Соотношения между единицами электромагнитных величин различных систем приводятся в табл. 1.19. [c.21]

    Согласно системе СИ основными единицами измерения электромагнитных величин являются метр, килограмм, секунда и ампер. Построенная на этих единицах система электромагнитных величин называется МКСА (см. табл. 1.18 на стр. 19). Систему единиц МКСА обычно применяют при написании уравнений электромагнитного поля в рационализированной форме. Рационализация уравнений электромагнитного поля имеет своей целью исключение множителя 4я из наиболее важных и часто применяемых уравнений. В системе МКСА при рационализированной форме уравнений электромагнитного поля электрическая бц и магнитная Хо постоянные принимаются равными  [c.21]

    Множитель 17,36 возникает вследствие использования децибела как единицы измерения затухания и магнитной проницаемости, взятой равной единице. Точное значение р определяется суммой по всем ионизированным частицам. Однако масса иона много больше массы электрона, поэтому, если только частота волн ш ненамного меньше частоты столкновений сос, наиболее существенный вклад в затухание вносят электроны. [c.229]

    Величина г = m/ служит мерой вращательного момента, она называется магнитным моментом единица измерения магнитного момента диполя дина-см/эрстед или эрг/эрстед. При описании и расчете магнитных свойств атомов, магнетизм которых обусловлен движением электронов, используют иную единицу измерения магнитного момента — магнетон Бора, равный 0,927-10 ° эрг/эрстед. Эта величина обычно обозначается цв и определяется выражением  [c.170]

    Абсолютная симметричная система электрических и магнитных единиц измерения (система Гаусса) возникла в результате объединения абсолютной электростатической системы СГСЭ и абсолютной электромагнитной системы СГСМ, В первой из них, основанной на законе электростатического взаимодействия электрических зарядов (закон Кулона), электрическая постоянная принята равной единице. Во второй, основанной на законе электродинамического взаимодействия токов (закон Ампера), магнитная постоянная принята равной единице. В связи с этим в системе СГС электрические единицы соответствуют электрическим единицам системы СГСЭ, а магнитные единицы — магнитным единицам системы СГСМ. [c.591]

    За единицу измерения магнитного момента принята величина М/4лт = о=9,17 10 21 гаусс1см , называемая магнетоном Бора, где е — заряд электрона, т — его масса, к — постоянная Планка. Магнетон Бора равен магнитному орбитальному моменту, р-электрона. [c.341]

    Стандартом допускалось применение для электрических и магнитных измерений абсолютной симметричной системы СГС, получившей распространение в теоретической литературе. Она дана для нерацио-нализироваиной формы уравнений электромагнитного поля, т. е. электрическая и мйгнитная постоянные являются величинами безразмерными и приняты равными единице. В этой системе электрические единицы не имеют особых названий для магнитных единиц приняты следующие наименования  [c.587]

    Др. важные параметры М.м. I. Остаточная намагниченность М, [или остаточная магн. индукция единица измерения - тесла (Тл)] количественно оценивается величиной намагниченности, сохраняющейся в образце после того, как он был намагничен внеш. магн. полем до насьпцения, а затем напряженность поля сведена до нуля. Величина М, (Д,) существенно зависит от формы образца, его кристаллич. структуры, т-ры, мех. воздействий (удары, сотрясения и т.п.) и др. факторов. 2. Коэрцитивная сила Н измеряется в А/м количественно определяется как напряженность поля, необходимая для изменения намагниченности тела от значения М, до нуля. Зависит от магнитной, кристаллографич. и др. видов анизотропии в-ва, наличия дефектов, способа изготовления образца и его обработки, а также внеш. условий, напр. т-ры. 3. Относит, магн. проницаемость ц характеризует изменение магн. индукции В среды при воздействии поля Я связана с магнитной восприимчивостью % соотношением ц = 1 -Н X (в СИ). В ферромагнетиках и ферритах ц сложным образом зависит от Я для описания этой зависимости вводят понятия дифференциальной (Цд ), начальной (ц ) и максимальной (Цмакс) проницаемостей. 4. Макс. уд. магн. энергия (в Дж/м ) или пропорциональная ей величина (ВН) , на участке размагничивания петли гистерезиса. 5. Намагниченность насыщения М, (или магн. индукция насыщения В ). 6. Кюри точка 7. Уд. электрич. сопротивление р (в Ом м). В ряде случаев существенны и др. параметры, напр температурные коэф. остаточной индукции и коэрцитивной силы, характеристики временной стабильности осн. параметров. [c.624]

    К физическим свойствам элементов. Графики занисимости между атомными весами и температурами плавления, температурами кипения, коэффициентами расширения и магнитной восириимчивостп, мольными объемами, частотами колебаний и потенциалами ионизации показывают периодические возрастания и убывания. Некоторые из таких данных приведены в табл. 2. Температуры плавления взяты из таблиц Ландольта — Бернштейна. Атомные объемы, использованные в работе Лотара Мейера, установившего их периодичность, были в дальнейшем пересмотрены Бауром [2], по даппым которого построен приведенный на рис. 1 график. Периодичность изменения свойств сжимаемости элементов впервые была обнаружена Ричардсом [3], п некоторые из его данных прпведены в табл. 2. Использованные им величины, как правило, относились к температуре 293,1° К и были выра кены в обратных мегабарах. Более точные величины получены Бриджменом [4] для температуры 303,1° К, причем в качестве единиц измерения он использовал (кг1см ) . Данные Бриджмена относятся к бесконечно малым давлениям, и они получены экстраполяцией сжимаемостей, измеренных при различных давлениях. За исключением водорода, азота, кислорода, галогенов и редких газов, атомные объемы и сжимаемости приведены для элементов в твердом состоянии. [c.191]


    Международная система единиц измерений физических величин—единая универсальная система. Она свя-зызает единицы измерения механических, тепловых, электрических, магнитных и других величин. В состав системы входят шесть основных единиц (метр, килограмм, секунда, ампер, градус Кельвина, свеча), две дополнительные (радиан и стерадиан) и 27 важнейших производных единиц из различных областей науки (табл. 1.1). В государственных стандартах СССР применяется понятие размера единицы, являющегося количественной мерой физической величины, содержащейся в единице измерения. Размер производных единиц определяется законами, связывающими физические величины, и выражен через размер основных или других производных единиц. Например, единица силы ньютон (к) установлена на основе второго закона Ньютона она равна силе, которая сообщает ускорение 1 м сег массе 1 кг. При выборе размера соблюдается в основном условие когерентности (связности) системы в уравнениях, определяющих единицы измерения производных величин, коэффициент пропорциональности должен быть величиной безразмерной и равен единице. [c.9]

    С выражается как разность фаз (в длинах волн) в слое жидкости толщиной ъ см в поле в 1 гаусс. Для нитробензолу С = 2,45- 10-1 при обыкновенной температуре и для желтой линии ртути 578 м 1. Если эту константу для нитробензола (как единицу измерения) положить равной 100, взять отношение К ней измеренной, по Коттону и Мутону, постоянной С для данного вещества и разделить полученное число Ь на плотность, то получается удельное магнитное двойное преломление Ь . С температурой оно мало меняется на каждый градус оно убывает у нитробензола на 0,96%> У -бромнафталина—на 0,29%. Магнитное двойное преломление— типично конститутивное свойство. Оно имеет относительно большую величину только у тех веществ, которые содержат бензольный цикл. Однако, причиной здесь является не замыкание цикла, как таковое, а известная степень ненасыщенности. Так, с одной стороны, у циклогексана не обнаруживается двойного преломления у циклогексена оно еще исключительно мало с другой стороны, вещества, имеющие другие кольца, подобные бензольному, например, фурановое, пироловое, тиофеновое, пиридиновое кольцо, дают магнитное двойное лучепреломление. Магнитное двойное преломление отсутствует у гидроароматических и у некоторых али- [c.171]


Смотреть страницы где упоминается термин Магнитные единицы измерения: [c.188]    [c.12]    [c.58]    [c.55]    [c.46]    [c.35]    [c.439]    [c.129]    [c.35]    [c.14]   
Краткий справочник по химии (1965) -- [ c.760 ]




ПОИСК





Смотрите так же термины и статьи:

Единицы измерения



© 2025 chem21.info Реклама на сайте