Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растрескивание методы испытаний материалов

    Эластичность. 5)то свойство покрытия определяется следующим образом Способность пленки лакокрасочного материала после сушки следовать движению или деформации подложки без растрескивания н отслаивания . Такое определение предполагает наличие определенной адгезии, так как пленка с идеальной адгезией и пло.хой эластичностью при деформации подложки растрескивается, но ие отслаивается. Все же обычно эластичность связывают со способностью пленки к растяжению без разрыва (безотносительно к адгезии), о чем свидетельствуют обычные методы испытания эластичности пленок на поверхности металла (метод изгиба на стержнях и метод Эриксена). [c.489]


    Склонность к коррозионному растрескиванию принято определять по нескольким показателям. Это может быть время, необходимое для появления первой трещины или полного разрущения образца. Также может быть применен показатель сравнения механических свойств образцов в напряженном и ненапряженном состояниях при их разрушении в коррозионной среде. При испытаниях с постоянной скоростью деформации может быть применен показатель максимально достигаемой нагрузки или показатели изменения пластичности материала (длительная пластичность образцов и ее изменение в зависимости от условий испытания или изменение относительного сужения разрушенных образцов). Формы и типы образцов при испытаниях на стойкость против коррозионного растрескивания достаточно разнообразны и зависят от метода испытания, формы изделия, типа внешних нагрузок, которые может испытывать оборудование в процессе эксплуатации. На рис. 1.4.40 приведено одно из приспособлений для испытаний образцов при постоянной нагрузке. В настоящее время достаточно широко распространены так называемые С-образные образцы, некоторые виды которых представлены на рис. 1.4.41. При испытаниях могут применяться гладкие или ступенчатые образцы, а также образцы с предварительно нанесенной усталостной трещиной. [c.119]

    Известные методы испытаний в значительной степени универсальны и пригодны для любых пластиков. С их помощью можно определять влияние на стойкость материала к растрескиванию параметров сырья, конструктивных особенностей оборудования, используемого для переработки сырья в изделия, режима переработки, вида переработки, режима окончательной обработки изделия, формы изделий и т. д. [c.255]

    В одном из применяемых на практике методов испытанию подвергают флаконы [20]. В горло флакона вставляют конический стержень, создавая таким образом напряжение за счет расширения материала горла. Находящиеся под напряжением флаконы помещают в среду, вызывающую растрескивание. В [21 ] предложен метод испытаний при постоянном продольном растяжении. [c.225]

    На рис. 5.55 показано, как по мере увеличения толщины образца процент поверхности разрушения, имеющей наклонные площадки сдвига уменьшается и Кс становится равным Kl , когда такие площадки фактически отсутствуют (условие плоской деформации). При исследовании механизма коррозионного растрескивания и при оценке материала в процессе разработки сплавов желательно проводить испытания в условиях плоской деформации. При использовании образцов меньших размеров (для которых не выполняются условия плоской деформации) некоторые исследователи делают выемку на боковых поверхностях образца, чтобы ограничить образование наклонных площадок сдвига. Такой метод испытания целесообразно применять для вязких материалов с низким пределом текучести, так как размеры образца для разрушения в условиях плоской деформации могут оказаться столь велики, что необходимые разрушающие нагрузки превысят мощность обычно применяемых для этих целей испытательных машин. [c.309]


    Результаты исследования будут зависеть от природы изучаемой системы, т. е. от таких свойств, как вязкость разрушения исследуемого материала, и от агрессивности используемой коррозионной среды. Результаты испытаний будут также зависеть от жесткости применяемых нагружающих устройств. Если жесткость устройства меньше упругой деформации, которая, по всей вероятности, остается в образце после образования полос Людерса, то коррозионное растрескивание в некоторых случаях может затормозиться, особенно тогда, когда заданные начальные напряжения по своей величине близки к пороговым напряжениям. Следовательно, есть некоторая опасность сопоставлять сопротивление материалов коррозионному растрескиванию по времени до разрушения при одном первоначально заданном уровне напряжений. Таким образом, хотя метод испытаний при постоянной деформации часто используется на практике, однако результаты его могут вводить в заблуждение при оценке материалов. На рис. 5.59 приведены результаты испытаний на чувствительность к растрескиванию образцов, подвергнутых предварительной холодной деформации разной величины. При начальных напряжениях 280 и 155 Н/мм образцы распределяются по чувствительности к коррозионному растрескиванию в зависимости от степени деформации в различной последовательности (табл.. 5.2). [c.313]

    Склонность стали к коррозионному растрескиванию может быть оценена по электрохимическим характеристикам напряженного и ненапряженного металла, а также путем физических исследований и прямых коррозионных испытаний. К физическим методам контроля относятся акустический и ультразвуковой методы, рентгеноструктурный анализ, оценка электросопротивления материала, магнитометрические методы. Общим во всех этих методах является то, что в их основу положен поиск поверхностной трещины, причина возникновения которой может быть как следствием коррози- [c.118]

    Для растрескивания материала (полученного по методу Циглера) высокой плотности с индексом расплава 2,0 потребовалось бы значительно меньше времени. В то же время то обстоятельство, что испытания по методу А. S. Т. М. проводятся при постоянной деформации, а не нри постоянной активности реагента, благоприятно для более мягких материалов. [c.94]

    Методы оценки склонности сплавов к коррозионному растрескиванию обсуждаются в работах [58, 59]. Обычно склонность сплавов к коррозионному растрескиванию определяют по времени, необходимому для появления первой трещины или полного разрушения образца, а также путем сравнения изменения механических свойств материала в напряженном и ненапряженном состоянии за время испытания. [c.294]

    Физико-химический анализ обуглероженного слоя дает определенные сведения о свойствах материала, механизме абляции и механизме его разрушения . Элементарный химический анализ обуглившегося слоя показывает преимущественную потерю определенных элементов (см. рис. 2) и возможное осаждение углерода на стенках пор в результате термического разложения газообразных продуктов. Образование новых химических соединений, например карбида кремния, можно обнаружить методом дифракции рентгеновских лу-чей 94 Общая пористость обуглероженного слоя определяет объем пустот, образующихся при высокотемпературном разложении пластмассы, и косвенно отражает ее сопротивление воздействию механических сил. Распределение пор по размерам в обуглероженном слое показывает его склонность к растрескиванию и относительную эффективность теплообмена между раскаленным обуглероженным слоем и газами, образующимися в процессе абляции. Для определения структуры пор и характера взаимодействия между микрокомпонентами материала можно также использовать микрофотографирование в обычном и поляризованном свете . Очевидно, что для характеристики поведения и свойств пластмасс в газовых средах при высоких температурах необходима как качественная, так и количественная информация . Объем и степень достоверности информации, необходимой для оценки эксплуатационных свойств материалов, зависит от методов и условий испытаний. [c.430]

    В соответствии с этим измерения зависимости величины разрушающих напряжений при коррозионном растрескивании от размера зерен могут быть использованы для определения значения поверхностной энергии. Однако Колеман и др. [21] в своих экспериментах получили значения поверхностной энергии заметно меньше, чем в других экспериментах. На основании этого они пришли к выводу, что поверхностная энергия, связанная с образованием трещины, уменьшается за счет адсорбции некоторых атомов или ионов, обладающих специфическими свойствами в средах, вызывающих коррозионное растрескивание. Однако можно и по-другому объяснить влияния размеров зерен на поведение сплавов при коррозионном растрескивании. Поведение сплава зависит от характера пластической деформации материала, а последний связан с размером зерна. Таким образом, уравнение (5.6), где — напряжение, обусловливающее пластическую деформацию при испытании по методу с заданной деформации, а значение /, определяющее сопротивление образованию полосы скольжения на границе зерна, может указывать на характер пластической деформации металла. Из этого следует, что влияние размеров зерен на коррозионное растрескивание может быть просто связано с их влиянием на характер пластической деформации в материале. Данные, приведенные, например, на рис. 5.18 и в разделе 5.2, предполагают, что влияние размеров зерен на коррозионное растрескивание, вероятно, в такой же степени связано с характером пластической деформации, как и с понижением поверхностной энергии. [c.234]


    Ранее этот метод использовали для сравнительного изучения влияния таких переменных факторов, как состав и структура сплава илп добавки ингибиторов к коррозионным средам, а также для исследования комбинированного влияния состава силава и коррозионной среды на разрушение в тех случаях, когда в лабораторных условиях не удавалось обнаружить растрескивания образцов при испытании по методу постоянной нагрузки или постоянной деформации. Таким образом, испытания при постоянной скорости деформации — относительно жесткий вид лабораторных испытаний в том смысле, что при их применении часто облегчается коррозионное растрескивание, в то время как другие способы испытания нагруженных гладких образцов не приводят к разрушению. С этой точки зрения рассматриваемый способ испытания подобен испытаниям образцов с предварительно нанесенной трещиной. В последние годы многие исследователи поняли значение испыта-Н1и"1 с использованием динамической деформации и теперь представляется, что испытания этого типа могут применяться гораздо более широко благодаря своей эффективности, быстроте и более надежной оценке исследуемых вариантов. На первый взгляд, может показаться, что испытания образцов на растяжение при малой скорости деформации до их разрушения в лабораторных условиях имеют небольшое сходство с практикой разрушения изделий при эксплуатации. При испытаниях по методу постоянной деформации и методу постоянной нагрузки распространение трещины также происходит в условиях слабой динамической деформации, в большей или меньшей степени зависящей от величины первоначально заданных напряжений. Главное заключается во времени испытаний, в течение которого зарождается трещина коррозионного растрескивания, и в структурном состоянии материала, определяющем ползучесть в образце. Кроме того, появляется все [c.315]

    Результаты от введения этих добавок не всегда имеют одинаковый характер кроме того, мало вероятно, чтобы они воспроизводили то, что происходит при неускоренных испытаниях в эксплуатационных условиях. Добавка соляной кислоты приводит, вероятно, к изменению характера катодного процесса (вместо кислородной деполяризации, водородная деполяризация) и можно полагать, что достигаемое ускорение зависит от перенапряжения водорода на данном материале. Тем не менее этот метод может быть полезен в тех случаях, когда нужно отличить материал, в котором появилась склонность к растрескиванию в результате неправильной термической обработки, от такого же материала, но без этой склонности. Если зависимость между количеством выделившегося водорода от времени испытания выразить кривой, то в кривой для материала, склонного к растрескиванию, ускорение выделения водорода выражено резче, чем в случае несклонного к растрескиванию материала [85]. [c.639]

    Для оценки склонности материала к коррозионному растрескиванию проводят испытания образцов в данной коррозионной среде а) при постоянном растягивающем напряжении б) при постоянной величине деформации или в) при постоянной скорости деформации. Чаще всего используют первые два способа нагружения. Если в рабочих условиях возможно изменение состава среды, для испытаний следует использовать среду с максимальным содержанием коррозионно-активных веществ. Должны учитываться также особенности контакта среды и материала в рабочих условиях. Методы испытаний можно разделить на две группы. Первая группа предполагает испытания в коррозионной среде нагруженных гладких образцов для определения зависимости времени до разрушения образца от величины напряжения а. Критерием стойкости металла по отношению к коррозионному растрескиванию может служить время до разрушения образца при пороговом напряжении Стп. ниже которого не происходит растрескивания при еколь угодно длительных испытаниях. При 28 [c.28]

    Все методы контроля стойкости металлов против коррозионного растрескивания можно разделить на три группы в зависимости от условий задания напряжений, возникающих в образце при испытаниях. Это испытания при постоянной общей деформации, постоянной нагрузке и постоянной скорости деформации. В первом случае происходит имитация напряжений, возникающих в конструкции при изготовлении или под воздействием монтажных или эксплуатационных дефектов — т. е. остаточных напряжений. Так как коррозионное растрескивание большинства деталей оборудования различного назначения связано именно с остаточными напряжениями в конструкции, то такие испытания можно считать наиболее реалистичными. Испытания при постоянной нагрузке имитируют разрушения под действием рабочих нагрузок в оборудовании, например в условиях внутреннего (рабочего) давления в сосуде или трубопроводе. Анализ повреждений при постоянной скорости деформации относится к гругше методов, не имеющих непосредственного производственного значения, так как вероятность стресс-коррозионного разрушения материала при таком виде нагружения конструкции мала. Однако эта группа методов позволяет глубже понять процессы, происходящие в материале при коррозионном растрескивании, и незаменима при лабораторных исследованиях. [c.118]

    Никелевые покрытия и плакирующие сплавы на основе никеля используют в зарубежной практике для защиты от коррозии элементов оборудования глубоких нефтяных скважин (труб, вентилей). В работе [48] приведены результаты испытания труб, изготовленных из стали марки AISI 4130 с плакировкой никелевым сплавом 625, полученных методом горячего изостатического прессования. Толщина плакирующего слоя биметалла составляла 29 и 4 мкм. Испытания включали анализ изменения механических свойств материалов после вьщержки в хлорсодержащей среде в присутствии сероводорода, оценку стойкости их к коррозионному растрескиванию и питтинговой коррозии. Результаты лабораторных и промышленных испытаний показали высокие эксплуатационные свойства биметалла при использовании в качестве конструкционного материала для оборудования высокоагрессивных сероводородсодержащих глубоких скважин. [c.96]

    Исследование скорости развития трещины в зависимости от уровня нагружения, свойств материала, среды и внешних факторов (поляризации, давления и температуры) [8,50]. При таком подходе данные о закономерностях роста трещин иод воздействием агрессивной среды и механических напряжений представляют в виде зависимостей скорости роста трещин при статическом (ко розионное растрескивание) или- динамическом (коррозионная усталость) нагружении от максимального (амплитудного) коэффициента интенсивности К цикла. При этом данные для построения указанных зависимостей (диаграмм разрушения) получают при испытании стаццаргньм образцов с трещинами, образовавшимися на образцах в процессе периодического (усталостного) нагружения их на воздухе. Подрастание трещины во времени измеряют по изменению электросопротивления образца, оптическим методам по податливости материала и т. п. Испытания проводят при заданной температуре среды, накладывая, по необходимости, на Образец анодную или катодную поляризацию. По полученнь м данным рассчиты- [c.132]

    BOB и использование результатов при проектировании, а также методики испытания на надежность конструкций могут быть найдены в работе [135]. Систематический подход к выбору материала был отчасти обусловлен разрушением емкостей из титана, содержащих N2O4 или метанол, но последующий успех космических полетов отражает достоинство этих методов. Второе применение данных коррозии под напряжением — при проектировании самолетов — направлено на исключение разрушений. Такие данные помогают в выборе периодичности осмотра конструкции на наличие трещин с тем, чтобы растрескивание могло быть определено сразу при сохранении целостности конструкции. Необходимо подчеркнуть, однако, что знание скоростей роста усталостных трещин в среде также необходимо для исключения разрушения. [c.428]

    В последние годы возникло предположение, что результаты подобных испытаний нагруженных пластин пз титановых материалов в морских и прочих средах, содержащих хлор-ионы, не позволяют в полной мере оценить склонность этих металлов к коррозионному растрескиванию под напряжением. В реальных конструкциях часто встречаются поверхностные дефекты материала, возникающие, например, при сварке, в процессе сборочных работ (соединение деталей с усилием) и т.д. Этот фактор впервые принял во внимание Браун [76], предложивший новые испытания в приспособлениях рычажного типа для оценки склонности титановых сплавов к коррозионному растрескиванию под напряжением. Суть нового метода заключалась в нанесении на обра- [c.122]

    Рассматривая более подробно механические лаборатории машиностроения, следует иметь в виду, что они должны получить уклон в сторону развития в них испытаний целых деталей, позволяющих быстро определять их надежность и выявлять распределение напряжений в деталях, трудно поддающихся расчету. Распределение напряжений чаще всего измеряется с помощью тензометров Гугенбергера иногда пользуются методом растрескивания лака в наиболее напряженных местах нагруженной детали, реже по деформации резиновых моделей или разрушению моделей из хрупкого материала. Для решения задачи плоскостного распределения напряжений применяются оптические установки с поляризованным светом. [c.35]


Смотреть страницы где упоминается термин Растрескивание методы испытаний материалов: [c.139]    [c.97]    [c.315]    [c.188]    [c.357]    [c.78]    [c.55]    [c.357]    [c.415]   
Достижения науки о коррозии и технология защиты от нее. Коррозионное растрескивание металлов (1985) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ методов испытаний материалов на коррозионное растрескивание

Материалы и методы



© 2025 chem21.info Реклама на сайте