Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Состав многокомпонентных сополимеров

    Хотя в ряде работ [19, 21] предприняты попытки рассмотрения вопроса о симметрии многокомпонентных сополимеров, общие соотношения (9.81) приводятся здесь впервые. Из этих соотношений следует, что для симметрии сополимера с т типами звеньев достаточно, чтобы этим свойством обладали все тройные сополимеры, образованные из этих типов звеньев. Причем достаточно показать только симметрию т — I) т — 2)/2 терполимеров, в состав которых входит мономер первого типа, тогда все остальные терполимеры, а следовательно, и т-компонентный сополимер также будут симметричны. [c.259]


    Отсюда вытекает два очевидных, но очень важных следствия а) индивидуальные скорости гомополимеризации не имеют никакого значения для предсказания состава сополимера (проводить экстраполяцию не следует) б) количественные данные (величины констант сополимеризации) приемлемы, когда они получены в опытах, в ходе которых начальные концентрации мономеров можно считать неизменными. Поскольку состав сополимера всегда отличается от состава исходной смеси (за исключением азеотропной полимеризации), это требование может удовлетворяться только при непрерывной подаче мономеров, а при работе с однократной загрузкой оно приближенно выполняется лишь при малых степенях превращения. Изменение состава сополимера с возрастанием степени превращения было теоретически оценено путем интегрирования уравнения сополимеризации > Уравнение сополимеризации было обобщено также для случая многокомпонентных систем [c.227]

    Анализ трехкомпонентных полимерных смесей и соответствующих сополимеров на основе изопрена, стирола и метилметакрилата рассмотрен выше при описании точности метода ПГХ [98, 130], при этом для расчета пирограмм использовали либо относительные величины, либо метод внутренней нормализации площадей пиков характеристических продуктов пиролиза. При определении количественного состава многокомпонентных систем, включающих сополимеры, расчет можно проводить как на основе одной градуировочной зависимости аналогично предыдущим случаям, так и на основе нескольких градуировочных прямых для каждого сополимера, входящего в состав анализируемого образца, в зависимости от числа мономерных звеньев разного строения в сополимере. Рассмотрим примеры определения количественного состава многокомпонентных систем, включающих сополимеры. [c.175]

    Принципы, применяемые для получения уравнения сонолимериза-ции, могут быть распространены на системы, содержащие болео двух мономеров [3] действительно, было получено решение для общего случая системы, содержащей любое число мономеров 152]. Решение этого уравнения дает состав получающегося многокомпонентного сополимера с учетом состава сырья и отношений реакционных способностей сырья для всех комбинаций мономеров, входящих в систему. Таким образом, по дап-НЫЛ1, полученным для достаточного количества пар мономеров, может быть вычислен состав продукта, получающегося в любой многокомпонентной системе. Экспериментальное подтверждение довольно сложных уравнений было получено для ряда трехкомпонентных систем и одной четырех-компоиентной [30, 152], и были описаны численные методы для приближенного решения интегральных уравнений [131, 152]. [c.144]


    Состав тройных и многокомпонентных сополимеров может быть рассчитан на основе констант сополимеризации двойных смесей Такие расчеты известны, например, для сополимеров, состоящих из винилхлорида, стирола и акрилонитрила, винилхлорида, стирола и метилакрилата Рассчитаны также составы тройных азеотропных смесей мономеров (т. е. смесей, которые сополимеризуются с образованием сополимера того же состава). Так, мольные соотношения азеотропных смесей винилхлорид—винилиденхлорид—триметилако-нитат составляют 53,34 4,29 42,37 для смеси винилхлорид— малеиновый ангидрид—2-хлораллилацетат—0,01 49,99 50,00 для смеси винилхлорид — винилацетат—трис-(триметилсилокси)-винил-силан — 72,10 21,38 6,52. [c.264]

    Таким образом, разделения фаз следует ожидать в тех слу чаях, когда на начальных стадиях отверждения многокомпонентных эпоксидных систем образуется достаточно высокомолекулярный полимер, по химическому составу отличающийся от остальной массы связующего, а такл<е тогда, когда один из полимеров переходит в гелеобразное состояние, в то время как другие олигомеры остаются в жидком состоянии. Выделения второй фазы в эпоксидных модифицированных связующих можно ожидать в тех случаях, когда в его состав входят высокомолекулярные пластификаторы или иизкомолекулярные олигомеры, отличающиеся по своей химической природе от эпоксидной смолы, особенно если этп олигомеры могут образовывать гомополнмер. Иногда выделяется фаза, состоящая из модификатора, сшитого эпоксидным олигомером. Возможно образование двух типов двухфазной системы — капельного , когда одна из фаз является дискретной, и двухкаркасного , когда обе фазы непрерывны. В большинстве исследованных систем наблюдается только капельная структура, что связано, вероятно, со сравнительно малым содержанием выделяющейся фазы [18, 83]. Каждая из фаз представляет собой ие чистый гомополимер, а сложную смесь двух полпмеров или сополимеров. Кинетика выделения новых фаз в отверждающихся эпоксидных системах мало изучена и зависит в значительной степени от скорости диффузии молекул полимеров в расплаве. Характер микроструктуры в расслаивающихся трехмерных полимерах зависит от многих факторов, и нахождение путей управления их структурой будет способствовать улучшению характеристик эпоксидных материалов и созданию новых композиций с новыми свойствами. [c.62]

    Основной вклад в композиционное распределение продуктов вносит ее конверсионная составляющая, появляющаяся из-за того, что в ходе процесса меняются как состав мономерной смеси, так и мгновенный состав сополимера. Изучение этой конверсионной составляпцей в процессах бинарной сополимеризации проводилось в работах [4- 3. В рассматриваемых многокомпонентных системах для ее характеристики удобно выбрать/и функций распределения определяемых так есть доля мономерных зве- [c.140]

    Влияние температуры на природу и выход продуктов полимеризации и изомеризации зависит от природы реагирующих веществ, обратимости реакции, продолжительности контакта катализата с катализатором и влажности катализатора. Так, при использовании в качестве катализатора полимеризации изобутилена аласьона С5, высущенного при 110°С, получен многокомпонентный катализат, состав которого сравнительно маЛо зависел от температурных условий проведения опытов (табл. 21). Катионит аласьон С5 готовят сульфированием сополимера стирола и дивинилбензола. [c.163]

    В основе классификации полимерных систем может лежать состав, методы получения, структура, области применения [7]. Согласно [8] все известные полимеры могут быть разделены так, как это сделано на схеме 1. На представлениях о строении полимерных цепей построен еще один вариант классификации (схема 2) [9]. Сперлинг применил для этой цели топологический подход с использованием теории графов (схема 3) [10]. Известна также классификация многокомпонентных полимерных систем, построенная с использованием понятий теории групп. Высказано предположение, что можно получить новые морфологические и топологические типы смесей, проводя так называемые обратные реакции [10]. Например, деструкция привитого сополимера или сетчатых структур может дать новые полимерные системы. Не исключается и возможность создания новых классификаций. Так, недавно предложена классификация многокомпонентных полимерных систем, в основе которой лежат элементы, представляющие определенные типы полимерных систем (гомо-и сополимеры, полимерные сетки и смеси) [11]. Более сложные системы составляют из данных элементов путем их соединения посредством бинарных операций, таких, как сополимеризация, сшивание, смешение, образование взаимопроникающих сеток (ВИС) и т. д. Такая классификация позволяет описать не только состав и метод получения полимерной системы, но и ее простран  [c.5]


Смотреть страницы где упоминается термин Состав многокомпонентных сополимеров: [c.91]    [c.467]    [c.96]    [c.256]   
Сополимеризация (1971) -- [ c.39 ]




ПОИСК





Смотрите так же термины и статьи:

Состав сополимеров



© 2025 chem21.info Реклама на сайте