Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алкилирование аренов по Фриделю-Крафтсу

    Алкилированием аренов алкилгалогенидами, тозилатами, спиртами или алке-нами (алкилирование по Фриделю — Крафтсу) I 413, 429 [c.385]

    Реакции электрофильного присоединения — элиминирования аренов могут быть необратимыми (например, нитрование и бромирование) или обратимыми (например, сульфирование и алкилирование по Фриделю — Крафтсу). Будет ли реакция обратимой или [c.329]

    Роль стадии отщепления протона от ст-комплекса в реакциях электрофильного ароматического замещения может быть выявлена при изучении первичного кинетического изотопного эффекта (КИЭ) водорода. Как указывалось в разделе 13.1, для многих реакций электрофильного замещения изотопный эффект отсутствует. Например, изотопный эффект не наблюдался при нитровании, хлорировании, бромировании и алкилировании по Фриделю—Крафтсу ароматических соединений самой разнообразной структуры. Ацилирование аренов характеризуется чрезвычайно низким КИЭ (ку /кц= 1,1-1,3). С другой стороны, изотопный эффект имеет заметную величину при сульфировании, азосочетании и в некоторых других реакциях. [c.409]


    Наиболее важными реакциями электрофильного замещения являются галогенирование, нитрование, сульфирование, алкилирование и ацилирование по Фриделю — Крафтсу, нитрозирование и азосочетание. Эти реакции будут рассмотрены в разделах, посвященных описанию методов получения соответствующих производных аренов. [c.263]

    Для аренов наиболее характерны реакции электрофильного замещения нитрования, сульфирования, галогенирования, алкилирования и ацилирования по Фриделю-Крафтсу и т. д. [c.37]

    Алкилирование и ацилирование по Фриделю — Крафтсу — типичные реакции электрофильного замещения в аренах. [c.503]

    Алкилирование может происходить и при помощи олефинов в присутствии катализаторов Фриделя — Крафтса этот способ имеет большое техническое значение. В качестве катализаторов используют фтористый водород, серную и фосфорную кислоты. Следует считать, что сначала к олефину присоединяется протон, как это было рассмотрено ранее. При этом образуется алкил-катион, который без дальнейшего участия катализатора Фриделя— Крафтса может реагировать с ареном. Поскольку присоединение кислот идет строго по правилу Марковникова, пропилен дает исключительно изопропильное производное соответствующего арена. [c.511]

    Химические свойства. Для аренов наиболее характерны реакции электрофильного замещения нитрования, сульфирования, галогенирования, алкилирования и ацилирования по Фриделю — Крафтсу, нитрозирования и т. д. Механизм всех этих реакций единый  [c.232]

    Однако между течением реакций алкилирования и ацилирования по Фриделю — Крафтсу наблюдаются и существенные различия. Они прежде всего определяются значительно меньшей ак-тивностью—ацилирующего реагента, благодаря чему реакция с ним заметно селективнее и чувствительнее к влиянию имеющихся заместителей. Так, если толуол при алкилировании вступает в реакцию со скоростью в 5—6 раз большей, чем бензол, то скорости ацилирования этих аренов различаются в 110—150 раз. Константа реакции р в уравнении Гаммета для алкилирования обычно имеет величину от —2 до —3, а для ацилирования она достигает величины —9 и более (см. 2.4.1). Это свидетельствует о более позднем переходном состоянии при ацилировании (см. 2.7.1). [c.210]

    Алкилирование по Фриделю — Крафтсу относится к группе наиболее сложных реакций электрофильного присоединения — элиминирования. Не только не существует единого механизма (см. уравнения 51—55), подходящего для всех случаев реакции, но возникают также и многие другие осложнения. Вступающая в ядро алкильная группа является естественно, электронодонорной, и поэтому продукт реакции более склонен к реакции с электрофилом, чем исходный субстрат. В связи с этим часто наблюдается ди- и полиалкилирование. Однако если использовать в качестве растворителя сам арен и проводить реакцию при энергичном перемешивании, часто удается получить продукты моноалкилирования с хорошим выходом. Эти два фактора имеют особенно большое [c.347]


    Как следует из приведенного выше обсуждения, в большинстве случаев в алкилировании по Фриделю — Крафтсу участвуют карбениевые ионы [18]. Образование карбениевого иона при использовании некоторых реагентов проходит чрезвычайно легко вследствие устойчивости катиона. Действительно, в определенных случаях алкилирование аренов с сильным нуклеофильными заместителями, например фенолов и ариламинов, проходит без катализатора. Это наблюдается при использовании трифенилметилхлорида [34] и 1-хлорадамантана [35]. Тропилиевый ион не взаимодействует с бензолом, но алкилирует анизол (уравнение 67) [36]. [c.351]

    Если бы алкилирующими агентами были свободные карбокатионы, то медленной стадией была бы стадия их образования (kl), а реакция с аренами была бы быстрой и третьего порядка не должно было наблюдаться. Крайне маловероятно, чтобы ал-килирующим агентом был бы молекулярный комплекс. Алкилирование по Фриделю-Крафтсу обычно имеет низкую внутри- и межмолекулярную селективность (см. табл. 13.4 и 13.6), и, следовательно, переходное состояние раннее, чго характерно для сильных электрофилов. При низких температурах иногда удается выделить комплексы алкилгалогенццов с кислотами Льюиса. Для них характерен медленный обмен галогенов по схеме [c.470]

    Легкость миграции алкильных групп убывает в ряду трет-бу-тил > изопропил > этил > метил. Таким образом, более мягкие условия будут вызывать миграцию или диспропорционирование других групп, но не метильной. Перегруппировки алкильных групп могут, конечно, наблюдаться и при алкилировании фенола по реакции Фриделя — Крафтса (см. гл. 1 Алканы, циклоалканы и арены , разд. Г.1), но в меньшей степени, чем в случае аренов, поскольку фенолы гораздо более реакционноспособны. Моноалкили-рование фенолов осложняется полиалкилированием, что отчасти можно преодолеть, применив избыток фенола. [c.310]

    Развитие принципов катализа галогенидами Фриделя - Крафтса, в частности системами МеХ -КНа1, послужило основой для создания метода синтеза блок-и привитых сополимеров изобутилена. Подобно реакциям алкилирования аренов [50] или ионной теломеризации олефинов [51], активация связи радикал-На1 с помощью кислот Льюиса является эффективным приемом генерирования катионных частиц вызывающих полимеризацию и другие электрофильные превращения изобутилена  [c.205]

    Ацилирование по Фриделю — Крафтсу, как и алкилирование, можно рассматривать двояко. С одной стороны, возможны реакции, протекающие с участием ацилиевого иона, а с другой — реакции, протекающие через непосредственную атаку ареном комплекса [c.359]

    Алкилирование аренов по Фриделю-Крафтсу как синтетический метод имеет три серьезных недостатка, ограничивающих его применение в органическом синтезе. Один из них заключается в том, что первоначально образующийся продукт алкилирования более реакционноспособен, чем исходный арен. Поэтому алкилирование аренов алкилгалогенидами при соотношении реагентов, близком к эквимольному, приводит к образованию значительного количества продуктов полиалкилирования. В этом отношении алкилирование сильно отличается от нитрования и галогенирования. Для того чтобы свести полиалкилирование к минимуму, используют большой избыток ароматического углеводорода. В этом случае он выполняет роль и реагента и растворителя. [c.471]

    В отлпчпе от алкилирования, применение которого в синтезе ограничено, ацилирование активпрованных алкенов, аренов и гетероаренов имеет очень большое синтетическое значение. Многие из этих реакций являются вариантами реакции Фриделя— Крафтса, например  [c.116]

    Указанные выше веш ества, кроме двуокиси серы и трифтор-уксусной кислоты, обычно применяются не как растворители, а как катализаторы, например при алкилировании аренов по Фриделю — Крафтсу (см. гл. 7). Н идкая двуокись серы (диэлектрическая проницаемость 14) ионизует алкилгалогениды [82], а особенно энергетически выгодная система трифепилметила (три-тила) дает при этом даже свободные ионы [83]. [c.173]

    При взаимодействии в условиях реакции Фриделя — Крафтса с ацил-галогенидами и ангидридами кислот лиганды типа аренов, циклопентадиенила и бутадиена ацилируются. Было описано также формилирование ферроцена. Продукты ацилирования изредка отщепляют окись углерода, давая алкильные производные [53]. Примером служит реакция алкилирования одного из циклопентадиеновых колец дихлорида дициклопентадиенилтитапа ацетилхлоридом в хлороформе. Этот же продукт образуется и с метилхло-ридом  [c.244]


Смотреть страницы где упоминается термин Алкилирование аренов по Фриделю-Крафтсу: [c.1095]    [c.352]    [c.506]    [c.1096]    [c.1097]    [c.60]    [c.469]    [c.214]    [c.342]   
Введение в электронную теорию органических реакций (1977) -- [ c.173 , c.460 , c.478 , c.503 , c.511 ]




ПОИСК





Смотрите так же термины и статьи:

Алкилирование по Фриделю-Крафтсу

Фридель

Фриделя Крафтса

Фриделя алкилирования



© 2025 chem21.info Реклама на сайте