Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Наиболее важные реакции полимеров

    Теоретические основы. Процесс протекает с выделением тепла. Расчетный тепловой эффект реакции алкилирования изобутана составляет 125—135 кДж/моль прореагировавших олефинов фактический тепловой эффект (с учетом побочных реакций) равен 85—90 кДж/моль. В условиях процесса имеют место реакции алкилирования изобутана олефинами, олигомеризации олефинов, расщепления продуктов олигомеризации, перераспределения водорода, образования и разложения алкилсульфатов. В результате этих реакций, протекающих большей частью по карбкатионному механизму, в продуктах образуется пять основных групп углеводородов триметилпентаны, диметилгексаны, легкая фракция (С4—Се), тяжелая фракция (Сд и выше), растворенные в кислоте высокомолекулярные углеводороды (полимеры). Названные углеводороды получаются нз общих для каждой группы одного или нескольких промежуточных веществ. Установлено, что в продуктах алкилирования содержится 17 изопара-финовых углеводородов С5—С и 18—20 изопарафиновых углеводородов Сд и выше. Наиболее важные химические стадии процесса алкилирования изобутана бутиленами следующие. [c.167]


    Краун-соединения, представленные на рис. 1.3 и классифицированные в табл, 1.1, могут быть охарактеризованы в целом как макроциклические соединения, содержащие в циклической структуре электронодонорные aso-мы, такие, как О, N и S. Это понятие включает такие би- и полициклические краун-соединения, например криптанды, которые могут состоять из двух или более колец. Естественно, существует множество методов синтеза таких краун-соединений, однако наиболее важный аспект любого из них заключается в подавлении побочных реакций, приводящих к линейным полимерам, для преимущественного протекания реакции циклизации, приводящей к циклическим соединениям. [c.33]

    Среди наиболее важных реакций, протекающих в твердой фазе под действием облучения, следует отметить радиационно-химические превращения в полимерах. Ионизирующее излучение можно использовать для инициирования таких реакций полимеризации, где мономеры находятся в твердом состоянии, хотя это и не совсем типичный случай. При облучении образуются свободные радикалы (и ионы), которые затем реагируют с другими мономерными молекулами с образованием больших радикалов последние в свою очередь реагируют с мономерами, и таким образом развивается цепной процесс. Если облучают сам полимер, его молекулярная структура может измениться вследствие таких реакций, как сшивание полимерных цепей либо их разрыв. [c.175]

    Влияние температуры на изменение различных свойств можно легко измерить природа этих изменений состоит главным образом во влиянии температуры на гибкость макромолекул. Вопрос о влиянии температуры усложняется, если при нагревании материал разлагается. Наиболее важными реакциями, протекающими при разложении, являются деструкция и структурирование эти реакции оказывают прямо противоположное влияние на свойства полимера. Так, при старении натурального каучука на воздухе в результате деструкции происходит размягчение материала, в то время как структурирование приводит к образованию хрупкого продукта. При длительной выдержке полимера при постоянной температуре или при постепенном повышении температуры его прочность может сначала уменьшиться вследствие деструкции цепей, а затем вновь увеличиться благодаря структурированию. В конце концов прочность вновь понижается в результате полного разложения полимера. Непрерывный продолжительный высокотемпературный пиролиз может вызвать карбонизацию, которая обычно обусловливает повышение диэлектрических потерь и снижение электрической прочности. Однако диэлектрическая проницаемость полисилоксанов при тепловом старении уменьшается, вероятно, вследствие выделения из структуры органических групп и приближения к структуре окиси кремния. [c.27]


    НАИБОЛЕЕ ВАЖНЫЕ РЕАКЦИИ ПОЛИМЕРОВ [c.118]

    Классификация химических реакций целлюлозы как полимера рассмотрена выше в разделе, посвященном особенностям химических реакций полисахаридов древесины (см. П.3.1). У технической целлюлозы, выделенной из древесины, наибольшее значение из полимераналогичных превращений на практике имеют реакции функциональных групп. К этим реакциям относятся реакции получения сложных и простых эфиров, получения щелочной целлюлозы, а также окисление с превращением спиртовых групп в карбонильные и карбоксильные. Из макромолекулярных реакций наиболее важны реакции деструкции. Реакции сшивания цепей с получением разветвленных привитых сополимеров или сшитых полимеров пока имеют ограниченное применение, главным образом, для улучшения свойств хлопчатобумажных тканей. Реакции концевых групп используются в анализе технических целлюлоз для характеристики их степени деструкции по редуцирующей способности (см. 16.5), а также для предотвращения реакций деполимеризации в щелочной среде. Как и у всех полимеров, у целлюлозы одновременно могут протекать реакции нескольких типов. Так, реакции функциональных групп, как правило, сопровождаются побочными реакциями деструкции. [c.544]

    Наиболее важная реакция аминокислот — полимери- [c.732]

    Реакционная способность стирола обычно связывается со способностью к образованию полимера и сополимера его этиленовая группа проявляет также необычную реакционную способность, реагируя со многими веществами. Ниже дано описание некоторых наиболее важных реакций стирола. [c.177]

    Наиболее важным процессом является окисление полимеров при их эксплуатации кислородом воздуха под влиянием световой, тепловой или иного вида энергии. Эти реакции сопровождаются деструкцией полимера, изменением его состава и структуры и обусловливают старение полимеров (старением называют изменение физико-химических и физико-механических свойств полимера в процессе эксплуатации). [c.270]

    В последние годы для удлинения цепи полисульфидных полимеров более широко стали использовать реакции присоединения. Наиболее важны реакции присоединения эпоксидных смол и изоцианатов, и лишь очень незначительное количество работ выполнено с полиненасыщенными системами. [c.326]

    Полимеризация —реакция образования высокомолекулярных веществ (полимеров) соединением нескольких молекул исходного вещества (мономера), которая не сопровождается выделением побочных продуктов. В полимере обычно повторяется та же группировка атомов, что и в молекуле мономера, без сохранения характера связи между отдельными атомами мономерного соединения. Полимеризация — одна из наиболее важных реакций мономеров. Открыта эта реакция А. М. Бутлеровым в 1873 г., изучавшим полимеризацию этилена, пропилена и изобутилена. Большой вклад в изучение реакции полимеризации сделали С. В. Лебедев, Л. Г. Гурвич, С. С. Наметкин и др. [c.64]

    Первичными продуктами радиолиза полимеров, как и других конденсированных систем, являются сольватированные или захваченные электроны, ионы, свободные радикалы и возбуждаемые молекулы. В результате реакций первичных продуктов радиолиза в полимерах происходят очень разнообразные физические и физико-химические явления. Наиболее важными являются сшивание, деструкция, газовыделение, окисление. [c.196]

    Полимеризация алкенов — наиболее важная реакция среди процессов, приводящих к образованию углерод-углеродных связей посредством реакций присоединения. Диапазон этого общего процесса — от реакций циклизации и димеризации и до образования полимеров (рис. 15.5). [c.347]

    Наиболее важные реакции гетероатомных соединений можно грубо разделить на следующие группы гидролитическая деструкция, термическое разложение и перегруппировка, нуклеофильное замещение галогенпроизводных, замещение по типу реакций Фриделя — Крафтса, реакции разрыва связей скелета и другие процессы, например восстановление, металлирование, образование аддуктов и радиационно-химические реакции. В следующих разделах эти реакции будут рассмотрены в указанном порядке, причем различные гетероатомные системы будут обсуждаться в порядке увеличения ионного характера их скелетных связей. Рассматриваемые здесь реакции представляют интерес не только с синтетической точки зрения, но также и вследствие того, что реакции разложения в значительной степени определяют технологическую ценность той или иной системы. Гидролитическая и термическая стабильность, в частности, определяют, из каких структур может быть построена молекула гетероатомных полимеров. [c.250]

    Радиационно-химические реакции. Достаточно сильное воздействие на молекулы реагирующих веществ оказывают ионизирующие излучения (7-излучение, поток нейтронов и т. д.), их химическое действие изучается в радиационной химии. На базе исследований радиационно-химических реакций возникла радиационно-химическая технология, достоинством которой является высокая скорость реакций при сравнительно низких давлениях и температурах, возможность получения материалов высокой чистоты и др. К наиболее важным процессам радиационнохимической технологии относятся полимеризация мономеров, вулканизация каучука без серы, сшивание полимеров, улучшение свойств полупроводников, очистка вредных газовых выбросов и сточных вод и др. [c.121]


    Когда говорят о многообразии процессов получения полимеров, то имеют в виду не только возможность использования в синтезе полимеров исходных веществ различных типов, но и те широкие перспективы, которые открываются при получении сополимеров и стереорегулярных полимеров. К числу наиболее важных реакций образования сополимеров относится сонолимеризация, которой и посвящается отдельная глава (гл. 6). Другие процессы образования сополимеров рассматриваются в соответствующих [c.7]

    Реакции макрорадикалов с соседними молекулами. Одной из наиболее важных реакций, протекающих в объеме полимера, является атака первичными свободными радикалами соседних макромолекул, завершающаяся отрывом атомов водорода и образованием срединных макрорадикалов [313, 322]. Важная роль этого процесса для разрушения полимера заключается в том, что полимерная молекула со срединным свободным радикалом, хотя и сохраняет целостность, но оказывается поврежденной , ослабленной энергия активации ее разрыва значительно уменьшается (см. ниже). Процесс превращения концевых радикалов в срединные с очевидностью следует из необратимых изменений формы спектров ЭПР, происходящих при отогревании разрушенных полимеров. Это видно, например, [c.201]

    Чрезвычайно важная область применения полимерных материалов связана с космической техникой. Здесь вследствие их легкости, прочности на разрыв, тепло- и электроизоляционных свойств и хорошей формуемости полимеры широко используются при изготовлении ракет, управляемых снарядов, спутников и космических кораблей. Одним из наиболее важных назначений полимеров является использование их в качестве внешнего покрытия космических кораблей для защиты от высоких температур. Такое применение полимеров основано в первую очередь на том, что их термическая деструкция в большинстве случаев представляет собой эндотермическую реакцию и поэтому в процессе деструкции происходит поглощение тепла за счет превращения тепловой энергии в химическую. Во-вторых, в отличие от огнеупоров и металлов полимеры — плохие проводники тепла и, следовательно, они препятствуют быстрому притоку [c.10]

    Упомянем еще об одном пути получения высокомолекулярных соединений — реакциях полиприсоединения. Наиболее важный пример таких реакций — образование полиуретановых полимеров при реакции между диизоцианатами и гликолями  [c.318]

    В катионной полимеризации передача через мономер находится в значительно более благоприятных условиях по отношению к реакции роста цепи ( р), чем в радикальной (см. таблицу), и, следовательно, это одна из наиболее важных реакций, ограничивающих рост полимера. Обычным путем реакции является переход протона от макромолекулярного катиона к мономеру  [c.102]

    Одним из наиболее важных кинетических вопросов, связанных с синтезом полиэтилена, является механизм образования разветвлений. Общее признание получило предположение, что механизм этот включает реакции переноса цепи в уже образовавшихся молекулах полимера, а именно  [c.172]

    Структура образующегося полимера зависит от целого ряда факторов, к числу наиболее важных относятся соотношение компонентов в катализаторе, температура реакции, природа растворителя. Кроме того, следует помнить, что даже в присутствии одних и тех же катализаторов полимеризация бутадиена и изопрена может привести к образованию продуктов различной конфигурации. В табл.2 приведен ряд данных, характеризующих влияние состава каталитических систем на структуру продуктов полимеризации. Причиной наблюдаемых отклонений, вероятно, являются различия в конфигурациях самих мономеров. Так, при комнатной температуре бутадиен приблизительно на 96% состоит из транс-изомера, в то время как изопрен при 50°С приблизительно на 85% состоит из г<мс-изомера /28/. Следует отметить, что катализаторы, под действием которых происходит образование продуктов, отличающихся [c.127]

    Результаты этого эксперимента типичны для большинства расплавов полимеров, его реологический смысл заключается в том, что при росте скоростей деформации реакция жидкости изменяется и ее поведение из ньютоновского превращается в неньютоновское. Последнее, как правило, преобладает при скоростях деформаций, реализуемых в реальных процессах переработки. Фактически уменьшение вязкости представляет собой наиболее важную для процессов переработки особенность неньютоновского поведения расплавов полимеров. Эта особенность реологического поведения расплава облегчает течение при больших скоростях и снижает опасность перегрева вследствие чрезмерных тепловыделений при вязком течении. Конечно, с помощью определяющего уравнения для ньютоновской жидкости (6.2-1) такое поведение описать нельзя. [c.135]

    Карбоновые кислоты играют важную роль в производстве полимеров, идущих на изготовление искусственного волокна, пленок и красок. Уксусная кислота-одно из наиболее важных в промышленном отношении веществ с низкой молекулярной массой. Сравнительно новый способ получения уксусной кислоты состоит в реакции метанола с моноксидом углерода в присутствии родиевого катализатора  [c.432]

    Твердый полимер как среда, где протекают разнообразные радикальные реакции, имеет ряд специфических особенностей, из которых наиболее важны следующие  [c.241]

    Твердый полимер как среда, где протекают разнообразные радикальные реакции, имеет ряд специфических особенностей, из которых наиболее важные следующие 1) сегменты макромолекул вследствие их большей протяженности связаны друг с другом достаточно прочно силами межмолекулярного притяжения, поэтому каждая частица в полимере (молекула, радикал, сегмент макромолекулы) находится в более прочной и медленнее релаксирующей клетке, чем в жидкости 2) в отличие от жидкости, где молекулы диффундируют достаточно быстро (скорость молекулярной диффузии имеет порядок величины 1 см/сут), макромолекулы в твердом полимере практически не диффундируют происходит только диффузия сегментов макромолекул, ограниченная некоторым микрообъемом 3) полимер неоднороден, в нем есть кристаллическая и аморфная фазы аморфная фаза, видимо, также неоднородна — она имеет более плотные и более рыхлые области. [c.289]

    Одним из наиболее важных превращений алкенов является реакция их полимеризации. Полимеризация - это присоединение молек>л алкенов (мономеров) друг к другу с образованием полимеров. Инициатором полимеризации может быть источник радикалов, облучение, давление. [c.76]

    У полисахаридов, как у всех полимеров, в реакциях мономерных звеньев и, в частности, функциональных групп характерно дробное поведение. Наименьшей реагирующей частицей в таких реакциях служит не вся макромолекула в целом, как у НМС, а отдельное звено - остаток моносахарида. Поэтому у полимеров результат оценивают как среднюю степень химического превращения. Эта особенность наиболее важное значение имеет при получении производных целлюлозы (см. 16.2). [c.281]

    Одним из наиболее важных превращений алкенов является реакция их полимеризации. Полимеризация - это присоединение молекул алкенов (мономеров) друг к другу с образованием полимеров. Инициатором полимеризации может быть источник радикалов, облучение, давление. В общем виде полимеризация этилена выглядит следук>щим образом  [c.36]

    Один из наиболее важных классов реакций полимеризации— это свободно-радикальная полимеризация виниловых соединений под виниловыми соединениями в данном случае понимают низкомолекулярные соединения, содержащие этиленовую связь, В этой книге делается попытка дать теоретические и экспериментальные основы, на которых базируются наши знания о кинетике и механизме таких реакций. Этот аспект химии полимеров, хотя на первый взгляд и кажется несколько ограниченным, в действительности имеет общее значение как для теории, так и для практики. Так, кинетика свободно-радикальной полимеризации виниловых соединений изучена более подробно, чем кинетика любой другой реакции, и в то же время можно с уверенностью сказать, что эта реакция будет использоваться в промышленности пластических масс и синтетического каучука в непрерывно возрастающих масштабах. Многотоннажное производство синтетических волокон из виниловых полимеров, полученных по свободно-радикальному механизму, начало развиваться сравнительно недавно, однако можно ожидать, что [c.7]

    Реакция сополимеризации. Важным направлением процесса полимеризации олефинов является реакция, при которой два или несколько олефинов или мономеров полимеризуются в смеси одновременно. Образующийся при этом продукт, содержащий структурные единицы двух или нескольких мономеров, известен под названием сополимера, а процесс получения такого продукта называется сополимеризацией. Такая реакция имеет большое теоретическое и практическое значение. В технике она дала возможность значительно увеличить число существующих полимеров. Так, например, из п мономеров теоретически может образоваться и /2 различных двухкомпонентных сополимеров, причем состав каждого из них может изменяться в определенных пределах. Кроме того, хотя некоторые пары мономеров не удается заставить сополимеризоваться, однако имеются и такие олефины, которые не полимеризуются каждый в отдельности, но легко образуют сополимеры. Реакция сополимеризации, таким образом, дает возможность получать полимеры с варьирующими в широких пределах физическими и химическими свойствами. При тщательном регулировании соотношения компонентов в сополимерных системах можно довольно тонко управлять этими свойствами, приспосабливая их для специальных целей, В результате многие из наиболее важных промышленных полимеров практически являются сополимерами, содержащими (обычио) два типа мономерных структурных единиц. Пе-( ечень некоторых из них приведен в табл. 7. [c.137]

    Специалистам, работающим в области аналитической химии полимеров, можно рекомендовать книгу Хуммеля [703], в которой имеется каталог спектров более чем 1750 полимеров. В этой книге приведены также химические реакции, характерные для наиболее важных классов полимеров и помогающие при идентификации. Для облегчения интерпретации полос спектра Хуммель приводит комбинации полос из спектров отдельных полимеров. Кроме этого в работе имеется больщое число ссылок на работы по спектроскопической идентификации полимеров. [c.166]

    Наиболее важная реакция этого рода — реакция фенолов с формальдегидом, которая протекает в присутствии как кислот, так и щелочей. При нагревании фенола (избытка) с формалином и серной кислотой происходит бурная реакция и образуется растворимый в спиртах, ацетоне и сложных эфирах полимер линейного строения — новолак . При щелочной конденсации фенола с избытком формалина сначала обра--зуется легкоплавкий сравнительно низкомолекулярный полимер резол , подобно новолаку растворимый в органических растворителях. Это— так называемый термореактивный полимер при нагревании происходит дальнейшая конденсация свободных оксиметиленовых групп с образованием метиленовых мостов, и полимер приобретает сетчатую структуру. Получаемый резитол нерастворим в органических растворите--лях, но сохраняет некоторую пластичность. При нагревании до 150°С конденсация идет дальше и получается химически очень устойчивый, неплавкий и нерастворимый полимер — резит , который можно нагревать до температуры 300°С. Таковы три стадии процесса конденсации, объединяемые названием бакелитизация (по имени изобретателя бакелита — Бакеланда). Обычно резол перед последующей стадией конденсации смешивают с надолнителем (минеральным типа асбеста или [c.111]

    Химическая природа стадии спонтанного обрыва ко является дискуссионной, причем очевидными возможностями являются отщепление протона, приводящее к образованию двойной связи в полимере, и присоединение аниона, приводящее к образованию насыщенного полимера. Реакция передачи цепи через мономер км связана, по всей вероятности, с переходом протона от растущей цепи к мономеру. С того времени, когда впервые предположили возможность этой реакции [17], ее считают одной из наиболее важных реакций, определяющих молекулярный вес полимеров, получающихся в катионных системах. Могут идти также реакции передачи цепи через растворитель или добавленные вещества. Ранее уже упоминалось о кинетических доказательствах передачи цепи через н-бутиловый спирт в предварительной работе с винил-н-бутнловым эфиром. [c.324]

    Наиболее важной реакцией серы с органическими молекуладш в промышленности является, конечно, вулканизация натурального и синтетического каучука. Однако более трудной системы для изучения едва ли можпо было бы себе представить не только вследствие полимерной природы продуктов, но и в связи с тем, что реакцию обычно проводят в присутствии целого ряда ускорителей, реагентов для составления композиций, антиоксидантов и наполнителей, большинство которых оказывает некоторое действие на процесс вулкаш зации. Как следствие, многое из того, что было написано о механизме реакции вулканизации, носит предположительный характер. Поэтому здесь обсуждаются пекоторые реакции простых олефинов с серой и лишь частично затрагивается вопрос распространения таких реакций на ненасыщенные полимеры. [c.265]

    Характерным отличием жидких тиоколов является способность превращаться в резины при комнатной температуре за счет реакций концевых меркаптанных групп. В связи с этим наиболее важной характеристикой тиоколов является содержание 5Н-групп и среднечисленная функциональность, показывающая среднее число меркаптанных групп, приходящихся на молекулу полимера. Функциональность полимера может быть рассчитана по количеству примененного 1,2,3-трихлорпропана. Последний полностью входит в состав жидкого полимера, что было доказано методом радиолиза с применением меченого по углероду 1,2,3-трихлорпропана [23]. Функциональность полимеров зависит от количества 1,2,3-трихлорпропана и от молекулярной массы полимера (см. табл. 1). Плотность разветвленности, вычисленная по среднему числу узлов разветвления, определяется только количеством примененного сшивающего агента и не зависит от молекулярной массы полимера. [c.559]

    Все белки являются полимерами аминокислот. Общая формула такого полимера показана в нижней части рис. 21-1, а модель отдельной аминокислоты-на рис. 21-12. Ферменты представляют собой один из классов белков, причем, видимо, наиболее важный. Ферменты имеют компактные молекулы с молекулярной массой от 10000 до нескольких миллионов и диаметром от 20 А и выше. Они выполняют роль катализаторов, регули-руюидах биохимические реакции. Другие компактные молекулы белков, например миоглобин и гемоглобин, выполняют роль переносчиков и накопителей молекулярного кислорода (см. рис. 20-25, 20-26). Цитохромы-это белки, способные к окислительно-восстановительным реакциям и играющие роль промежуточных звеньев при извлечении энергии из пищевых продуктов (см. рис. 20-23). Молекулы гамма-глобулинов с молекулярной массой порядка 160000 представляют собой так называемые антитела, защитное действие которых заключается в том, что они присоединяются к вирусам, бактериям и другим чужеродным телам в живом организме и осаждают их из жидких сред. Все перечисленные белки относятся к глобулярным белкам. [c.313]

    Описываемые методы синтеза полимеров в данной главе расположены, насколько это возможно, по классам полимеров полиамиды, полиуретаны, полимочевииы и т. д. Примеры специфичных полимеробразующих реакций (например, реакция содержащих активный атом водорода соединений с галоидангидрияами) разбросаны по всей главе. Обсуждение некоторых наиболее важных вопросов теории поликонденсации и миграционной полимеризации приводится перед описанием данной реакции. Непосредственно после основных синтезов включены также некоторые примеры химических реакций самих полимеров. Эти примеры подчеркивают применимость [c.78]

    Синтетические иолиизопрены, полученные методом эмульсионной полимеризации, содержат примерно 12— 14% 1,2-продукта, тогда как полиизопрен, полученный с натрием, имеет 50—55% 1,2-продукта остальное — в основном тра с-1,4-полимер и немного ( с-продукта. Установлено, что при полимеризации изопрена с титанорга-ническими соединениями, алкиллитием или с алкил-литийалюминием получают полинзопрен, который в основном идентичен цыс-1, 4-полиизопрену каучука нз гевеи. Более того, хотя металлический натрин в тонкораздробленном состоянии дает продукт, содержащий большой процент 1,2-присоединения, установлено, что тонкораздробленный металлический литий дает в основном те же результаты, что н металлоорганические производные. Приведенные ниже методики типичны для полимеризации изопрена с этим типом катализатора. Следует указать, что во всех этих реакциях полимеризации успех зависит от ряда факторов, наиболее важными из которых являются чистота мономера и отсутствие загрязнений в системе, особенно влаги или воздуха. [c.269]

    Углеводы встречаются в природе чаще всего в виде олигосахаридов (полимеров, содержащих от двух до десяти мопосахаридных единиц) либо полисахаридов (полимеров, включающих в свой состав более десяти мономеров). В данной главе мы рассмотрим некоторые наиболее важные ди- и полисахариды. Эти полимеры возникают в результате реакции между гидроксильной группой при нолуацетальном атоме углерода одного моносахарида н гидроксильной группой второй моносахаридной единицы (разд. 17.4). Как правило, эти связи образуются между С1 одной альдозы и С4 другой альдозы, но могут возникать также между С1 и С2, С1 и СЗ и между С1 и Сб. [c.453]

    Термическое воздействие выше 620 К приводит к деградации и деполимеризации полимера. Выход мономера в летучих продуктах реакции достигает порядка 20 30% (масс), а выход углеводородов С5 и выше - более 65-70% (масс) при скорости деполимеризации 2,5-3%> мин. (623 К) [12]. В числе получающихся наиболее важных, помимо изобутилена, продуктов следует отметить ди-, три-и тетрамеры изобутилена образующиеся при внутримолекулярной передаче цепи по свободно-радикальному механизму. [c.219]

    Наиболее важным промышленным применением таких окислительно-восстановительных реакций является низкотемпературная эмульсионная полимеризация смеси стирол — бутадиен при получении каучука в присутствии гидроперекиси кумола и ионов железа в качестве катализатора. Органические мономеры полимеризуются, превращаясь в маслообразные капли в водной эмульсии, которая стабилизируется добавлением мыла и щелочей. Типовой промышленный рецепт приведен в табл. 11.1. Как видно, смесь эта сложная, и в деталях неизвестно назначение каждого ее ингредиента. Из них представляют интерес гидроперекись, ион железа, пирофосфат Na4P207-IOH2O (который необходим для растворения железа), и тиол (его добавляют в качестве переносчика цепи для уменьшения выхода продуктов с низким молекулярным весом и чтобы обеспечить получение полимера, легко поддающегося обработке). [c.133]

    Поливинилацетат [26]. В настоящее время наиболее важным промышленным методом получения поливинилацетата является, по-видимому, полимеризация в эмульсии далее по степени важности следуют суспензионный метод и полимеризация в растворе. Реакция осуществляется периодическими или непрерывными методами и инициируется перекисями. В тех случаях когда полчвинил-ацетат используется в виде растворов (лаки, клеи, переработка в поливиниловый спирт), целесообразно проводить, полимеризацию в растворителях. Молекулярная масса (порядка нескольких десятков тысяч) получаемых при этом полимеров зависит не только от количества инициатора, природы растворителя (бензол, этилацетат, метиловый спирт) и концентрации мономера в растворе, но и от содержания ацетальдегида в мономере. Ацетальдегид образуется при синтезе винилацетата за счет реакции ацетилена со следами воды в исходных веществах. [c.296]

    Процесс химической деструкции полимеров в афессивных средах включает ряд стадий, из которых наиболее важными являются адсорбция,диффузия афсссивной среды в полимер и распад химически нестойких связей под действием компонентов афессивной среды. Последняя стадия представляет в большинстве случаев ионную или молекулярную реакцию. Скорость этой реакции может быть представлена выражением (26) [c.107]


Смотреть страницы где упоминается термин Наиболее важные реакции полимеров: [c.19]    [c.398]    [c.123]    [c.336]   
Смотреть главы в:

Химические реакции полимеров -> Наиболее важные реакции полимеров




ПОИСК





Смотрите так же термины и статьи:

Реакции полимеров



© 2024 chem21.info Реклама на сайте