Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрофильное замещение и изотопные эффекты

    Оказалось, что в таких реакциях электрофильного замещения, как нитрование бензола, толуола, нитробензола, нитротолуола, нафталина и других ароматических соединений, а также бромирование бромбензола, изотопный эффект практически отсутствует. Это позволяет однозначно считать, что названные реакции протекают по двухстадийному механизму и, следовательно, присоединение электрофильной частицы и отщепление протона происходят неодновременно. При этом лимитирующей стадией всего процесса является образование карбокатиона, когда еще не затрагивается связь Аг—Н. [c.315]


    Роль стадии отщепления протона от ст-комплекса в реакциях электрофильного ароматического замещения может быть выявлена при изучении первичного кинетического изотопного эффекта (КИЭ) водорода. Как указывалось в разделе 13.1, для многих реакций электрофильного замещения изотопный эффект отсутствует. Например, изотопный эффект не наблюдался при нитровании, хлорировании, бромировании и алкилировании по Фриделю—Крафтсу ароматических соединений самой разнообразной структуры. Ацилирование аренов характеризуется чрезвычайно низким КИЭ (ку /кц= 1,1-1,3). С другой стороны, изотопный эффект имеет заметную величину при сульфировании, азосочетании и в некоторых других реакциях. [c.409]

    Однако некоторые реакции электрофильного замещения, например реакция сульфирования, протекают с изотопным эффектом, хотя чаще он бывает незначителен. При этом нельзя составить себе определенное представление о механизме реакции, так как изотопный эффект может наблюдаться как в том случае, когда реакция идет согласно первому, одностадийному, механизму, так и в случае, когда скорость образования карбокатиона по второму механизму высока и соизмерима со скоростью отщепления протона. Последнее может наблюдаться при реакциях ароматических соединений с повышенной основностью или при проведении реакции с очень агрессивными электрофильными реагентами. В этом случае суммарная скорость процесса будет зависеть как от первой, так и от второй стадий, и, следовательно, при этом будет наблюдаться изотопный эффект. [c.315]

    При исследовании механизма реакции электрофильного замещения применялся изотопный метод [159]. Оказалось, что соединения, меченные дейтерием и тритием, замещаются с такой же скоростью, как и водородсодержащие аналоги, т. е. заметного изотопного кинетического эффекта для большинства реакций не наблюдается. Учитывая, что энергия разрыва связей углерод — дейтерий и углерод — третий выше, чем энергия связи С—Н, можно заключить, что последняя стадия реакций электрофильного замещения — отрыв протона — не должна быть лимитирующей. Поскольку образование л-комплексов — быстрый процесс, то в качестве лимитирующей стадии остается изомеризация я-комплекса в а-комплекс. [c.238]

    Однако для ряда реакций электрофильного замещения (например, сульфирования) обнаружен первичный изотопный эффект — отношение/(h/Kd = 1,2 ч-2 [160]. [c.238]

    Однако кинетический метод с использованием ароматических соединений, меченных дейтерием и тритием, позволил однозначно установить, что большинство реакций электрофильного замещения в ароматическом ядре протекает по двухстадийному механизму. Если бы реакции протекали по первому механизму в одну стадию или если бы вторая стадия второго механизма лимитировала весь процесс, то при замене в реагирующем ароматическом соединении водорода на дейтерий или тритий наблюдался бы изотопный эффект, т. е. произошло бы значительное уменьшение скорости реакции. (Известно, что вследствие различия масс водорода, дейтерия и трития разрыв связи С—Н происходит в 5—8 раз быстрее, чем связи С—О, и в 20—30 раз быстрее, чем связи С—Т). [c.315]


    В общем случае стадией, определяющей скорость реакции, при электрофильном замещении является образование а-комплекса. В исключительных случаях скорость реакции может также определяться скоростью депротонирования а-комплекса. В таком случае наблюдается кинетический изотопный эффект (Цоллингер). [c.264]

    В реакции используют большой избыток 025 04. Равновесие каждой стадии смещено вправо, так как реакция протекает с большим (максимальным из известных) изотопным эффектом А (0+) й (Н+) =9, т. е. протон отщепляется от а-комплекса в 9 раз легче, чем 0+. Образовавшийся в результате реакции полностью дейтерированный бензол используют для изучения механизма реакций электрофильного замещения в ароматическом ряду. [c.356]

    Во многих реакциях электрофильного замещения отсутствует изотопный эффект. Это объясняется тем, что стадии присоединения электрофила и удаления водорода разобщены, при этом первый процесс лимитирует скорость реакции, являясь более медленным. [c.236]

    Вопрос о том, какая из этих стадий — лимитирующая в ряде случаев удается решить, используя метод кинетических изотопных эффектов (КИЭ). Скорость второй стадии можно уменьшить в 7—12 раз, используя для электрофильного замещения соединение, в котором ядро отщепляемого водорода заменено более тяжелыми ядрами дейтерия или трития. Однако обнаружить влияние этой замены можно лишь тогда, когда она сказывается на экспериментально наблюдаемой суммарной скорости всей реакции. При условии, что концентрация а-комплекса все время мала и постоянна, эту скорость можно выразить следующим уравнением  [c.39]

    Однако ДО сих пор мы рассматривали еще не весь механизм реакции, а лишь часть его. Если принять, что замещение является электрофильной реакцией, то на каком основании мы утверждаем, что оно протекает в две стадии, как было показано, а не в одну Почему мы считаем, что из этих двух стадий первая гораздо медленнее Чтобы понять, каким образом был найден ответ, необходимо сначала немного познакомиться с явлением изотопного эффекта. [c.343]

    То, что 6 различных групп (если исключить иод, то 5), включающих связи 5(4) различных элементов с углеродом, замещаются с почти тождественными скоростями, нз первый взгляд кажется очень удивительным. Однако отсутствие элементного эффекта весьма сходно с отсутствием изотопного эффекта водорода при электрофильном замещении в ароматическом кольце. Поскольку известно, что скорость расщепления связей между углеродом и другими элементами сильно изменяется при переходе от одного элемента к другому, наличие здесь постоянной скорости едва ли может быть объяснено иначе, чем предположением об отсутствии разрыва этой связи при лимитирующей стадии. Таким образом, обычная реакция 5д, 2-типа, по-видимому, исключается. Как и в случае электрофильной реакции, лимитирующей стадией является, вероятно, присоединение атакующего агента. То обстоятельство, что первые три реакции обладают значительно большими скоростями, не указывает на ошибочность сделанного выше заключения. Вполне возможно, что некоторые заместители могут оказывать особое ускоряющее влияние на стадию присоединения. [c.136]

    Таким образом, отсутствие изотопных эффектов указывает не только на двухстадийный характер реакции электрофильного замещения в ароматическом ряду, но и устанавливает относительные скорости стадий. Присоединение электрофила к углеродному атому кольца — наиболее трудная стадия реакции (рис. 11.2), но она одинаково затруднена для случая, когда углерод связан как с протоном, так и с дейтерием. Следующая стадия, отрыв водорода, протекает легче, чем первая. И несмотря на то, что она замедлена для случая с дейтерием, на суммарной скорости реакции это не сказывается. [c.346]

    Сульфирование — необычная реакция электрофильного замещения в ароматическом ряду,- поскольку она обратима. Необычность этой реакции также в том, что для нее характерен умеренный изотопный эффект обычный водород (протий) замещается в ароматическом кольце примерно в два раза быстрее, чем дейтерий (разд. 11.13). Более внимательное рассмотрение показывает, что эти два фактора взаимосвязаны. [c.671]

    В разд. 11.14 мы искали ответ на вопрос для реакций электрофильного замещения в ароматическом ряду. Тогда ответ был найден на основании отсутствия изотопного эффекта хотя связи углерод — дейтерий разрываются медленнее, чем связи углерод — водород, было обнаружено, что водород и дейтерий замещаются с одной и той же скоростью. Следовательно, реакционная способность определяется скоростью реакции, не включающей стадию разрыва углерод-водородной связи. [c.799]

    Другой реакцией электрофильного замещения в ряду диеновых комплексов металлов, привлекшей большое внимание, была реакция дейтероводородного обмена. Обычно эта реакция является стереоспецифичной, причем электрофильная атака направлена со стороны двойной связи, обращенной к металлу [210, 658, 673] (схемы 709, 710). Детальный механизм этой реакции, учитывающий как стереохимию, так и большой кинетический изотопный эффект, был предложен Берчем и Дженкинсом согласно их данным, скоростьопределяющей стадией реакции является протонирование атома железа [210]. [c.426]


    Относительно механизма металлирования ароматических соединений, как известно, существует две гипотезы. Согласно одной из них, наиболее важной стадией реакции является электрофильная атака катионом металла (металлорганического реагента) углеродного атома ароматического кольца, от которого в дальнейшем легко удаляется атом водорода. Поскольку реакции электрофильного замещения в ароматическом кольце обычно протекают без измеримого изотопного эффекта водорода, естественно ожидать, что его не будет и при реакции металлирования. [c.255]

    Стадией, определяющей скорость электрофильного замещения, является, как правило, образование о-комплекса (см. раздел 2.1.5.1) ни связи С—Н, ни С—О прн этом не разрываются. Поэтому кинетический изотопный эффект не наблюдается все три соединения реагируют с одинаковой скоростью. [c.795]

    Для веществ, меченных дейтерием или тритием, различие в скоростях реакции по сравнению с соединениями, содержащими протий особенно велико вследствие большого различия в массах этих изотопов (1 2 или 1 3). В тех случаях, когда кц/ко или кц/кг равно 1, говорят, что кинетический изотопный эффект отсутствует. В этих реакциях стадия 3 является скоростьлимитирующей. Большинство реакций электрофильного замещения в ароматическом ряду не обнаруживают кинетического изотопного эффекта. [c.155]

    В тех случаях, когда или к к равно 1, говорят, что кинетический изотопный эффект отсутствует. В этих реакциях стадия образования а-комплекса является скоростьлимитирующей. Многие реакции электрофильного замещения в ароматическом ряду не обнаруживают кинетического изотопного эффекта. [c.415]

    При сульфировании олеумом серная кислота может прото-нировать атом кислорода в 50з еще до взаимодействия его с бензолом, генерируя электрофильную частицу +5020Н, по активности соизмеримую с нитроний-катионом. Однако это предположение менее вероятно, так как реакция сульфирования протекает со значительным изотопным эффектом (5—6), наличие которого легче объяснить, предполагая, что о-комплекс образуется за счет электронейтральной молекулы 50з, и отщепление протона от биполярного иона осуществить труднее, чем от карбокатиона. В этом случае подход к а-комплексу акцептора протона затрудняется из-за возникающего между ним и несущей полный отрицательный заряд группой ЗОз электростатического отталкивания. Таким образом, отщепление протона на завершающей стадии реакции в данном случае будет происходить значительно медленнее, чем при проведении других реакций электрофильного замещения. [c.367]

    Электрофильное замещение в ароматическом ядре. Роль гииерконъюгации метильной группы, например, с ароматическим ядром при электрофил ьном замещении в ароматическом ядре еще далеко не выяснена. Поэтому исследования соответствующих вторичных изотопных эффектов приобретают большое значение. В работе Свейна, Киее и Кресге [94] получены следующие величины изотопных эффектов. Отношение т/ н при нитровании толуола и толуола-а-Т ионом нитрония равно 0,997+ +0,003. Зиачеиие о/ н Для реакции меркурирования толуола- , а, а-Оз в расчете на один атом дейтерия составляет 1,00+0,03, а для бромирования толуола-а-Т молекулярным бромом у т/ н=0,956+0,008. Все эти реакции проводились при 25°С. Таким образом, реальные эффекты невелики. Заслуживает особого внимания наличие твердо установленного изотопного эффекта только при реакции [c.106]

    Наиболее медленной стадией в процессе электрофильного замещения может быть как стадия образования ст-комплекса, так и стадия его распада. Вопрос о том, какая стадия является наиболее медленной, может быть решен экспериментально. Для этого сопоставляют скорость электрофильного замещения в аналогично построенных прото-, дейтеро- или тритийсодержащих соединениях. Если изотопный эффект не наблюдается, то наиболее медленной ста- [c.165]

    Доказательством подобного механизма может служить тот факт, что арилирование не сопровождается изотопным эффектом, т. е. дейтерий и тритий замещаются с той же скоростью, что и протий, откуда следует, что разрыв связи углерод — водород не является стадией, лимитирующей скорость реакции. Относительное изменение реакционной способности монозамещенных бензола в случае гомолитической атаки выражено значительно слабее, чем в случае атаки электрофильными (см. стр. 154) и нуклеофильными (см. стр. 168) реагентами. По реакционной способности в отношении гомолитической атаки все монозаме-щенные бензола различаются не более чем в десять раз, причем большинство из них, независимо от природы заместителя, атакуется легче, чем сам бензол. Ориентирующее влияние заместителя при гомолитическом замещении также выражено слабее, чем при электрофильной атаке, и все заместители — как электронодонорные, так и электроноакцепторные, несколько облегчают гомолитическую атаку в орто- и пара-положения, по-видимому, за счет возможности делокализации. [c.304]

    Большое ко.ничество данных относительно кинетики реакций, изотопных эффектов и влияния структуры на реакционную способность позволили тщательно разобраться в стадиях нитрования ароматических соединений. Как следует из основного механизма электрофильного замещения, существуют три различные стадии  [c.356]

    Теперь, когда мы зиаем, что такое изотопные эффекты и чем они обусловлены, можно обратиться к вопросу, почему они собственно интересуют химиков-органиков. Вернемся к вопросу, который уже был поставлен ранее почему мы считаем, что электрофильное замещение в ароматическом ряду протекает в две стадии [c.344]

    Электрофильное замещение в ароматическом ряду относится к одной из наиболее изученных органических реакций. Можно рассмотреть два крайних случая 1) одностадийное прямое замещение и 2) многостадийные процессы с участием дискретных интермедиатов. Если осуществляется механизм прямого замещения, следует ожидать первичного кинетического изотопного эффекта, причем при комнатной температуре 1н/ 2и 5-7-8 или 1н/ зн Ю 16. В большинстве реакций такой изотропный эффект не наблюдается. Так, скорости нитрования бензола и гексадейтеробензола одинаковы. Более подробно изотопные эффекты будут обсуждены позже. [c.329]

    При исследовании механизма реакции электрофильного замещения шведский химик Л. Меландер применил изотопный метод. Оказалось, что соединения, меченные дейтерием и тритием, замещаются с такой же скоростью, что и водородсодер-жащие аналоги, т. е. заметного изотопного кинетического эффекта для большинства реакций (за исключением реакции сульфирования) не наблюдается. Учитывая, что энергия разрыва связей углерод — дейтерий и углерод — тритий выше, чем энергия связи С—Н, можно заключить,. что последняя стадия реакции электрофильного замещения — отрыв протона —не должна быть лимитирующей. Следовательно, относительно медленной, лимитирующей стадией является образование промежуточных соединений. Известно, что образование я-комплексов — быстрый. процесс, значит, панболес медленная стадия — изомеризация я-комплекса и а-комилекс. Это подтверждается, например, наличием корреляции между скоростями реакции галогенирования гомологов бензола и устойчипостью а-комплексов, в то время как подобная корреляция с устойчивостью л-комплексов отсутствует. [c.248]

    Замена водорода в положении 2 на дейтерий не оказывает существенного влияния на скорость отношение h/ d равно 0,97 для сочетания с о-метоксифенилдиазонием и 1,04 для сочетания с га-хлорфенилдиазонием [591. В этом случае, типичном для пространственно незатрудненного азосочетания, реакция напоминает широко распространенные случаи электрофильного ароматического замещения, а именно нитрование и галогенирование, в которых не обнаруживается изотопного эффекта водорода [601. [c.228]

    Соответственно этому уравнению, скоростьлимитирующей стадией большинства реакций электрофильного замещения является стадия образования о-комплекса. Поскольку стадия 4 - реароматизация - описывается тем же кинетическим уравнением (1), решение вопроса о скоростьлимитирующей стадии требует дополнительных данных, в частности, изучения кинетического изотопного эффекта (КИЭ) реакции. [c.155]

    С помощью дейтерометки было установлено отсутствие изотопного эффекта, следовательно, отщепление протона от гетероцикла в первоначально образующемся цвиттер-иониом комплексе А происходит быстро, как это свойственно электрофильному ароматическому замещению. В данном случае роль электрофила играет 4,6-динитробензофуроксан. При использовании в качестве субстратов 2,5,К-триметилпиррола. индола и 2-метилиндола кинетическими исследованиями было установлено, что [c.346]

    Согласно одной из этих гипотез, наиболее важная стадия состоит в электрофильиой атаке катионом металла металлорганического реагента того углеродного атома ароматического кольца, от которого в дальнейшем, по-ви-видимому, легко удаляется атом водорода. Подобный механизм эквивалентен тому, который имеет место при обычном электрофильном замещении в ароматическом кольце, рассматриваемом дальше в этой главе. Поскольку было показано, что большинство реакций электрофильиого замещения в ароматическом кольце протекает без измеримого изотопного эффекта водорода, естественно ожидать его отсутствия и при реакции металлирования. [c.110]

    Электрофильный обмен водорода. Теоретически наиболее простой реакцией электрофильиого замещения в ароматическом ядре является электрофильный обмен водорода, при котором одно ядро атома водорода, прикрепленное к ароматическому кольцу, заменяется на другое. Если эти два атома водорода отличаются своей массой, то при реакции происходит изотопный обмен. Поскольку существуют три изотопа водорода, можно изучать изотопный эффект обмена, проводя сравниваемые реакции в близких условиях. В частности, в опытах Олсона [69, 72], который изучал этот обмен в бензоле и толуоле в присутствии разбавленной серной кислоты в качестве катализатора, происходило замещение дейтерия и трития на протий. [c.130]

    Декарбонилирование. Результаты, описанные выше, относились к замещению изотопов водорода. Этот тип реакций значительно лучше исследован, чем другие реакции электрофильиого замещения. Работы Шуберта и Буркета [86], а также Шуберта и Майра [87], изучавших электрофильное отщепление карбонильной группы от 2,4,6-три-метил- и 2,4,6-изопропилбеизальдегида в разбавленной серной кислоте при 80°С, являются другим примером использования способа измерений изотопных эффектов водорода. Здесь нет возможности рассмотреть все интересные особенности этих экспериментов, и поэтому мы опишем [c.132]


Смотреть страницы где упоминается термин Электрофильное замещение и изотопные эффекты: [c.399]    [c.45]    [c.152]    [c.346]    [c.354]    [c.356]    [c.600]    [c.463]    [c.399]    [c.410]    [c.170]    [c.4]    [c.126]    [c.135]   
Органическая химия (1974) -- [ c.343 , c.344 ]




ПОИСК





Смотрите так же термины и статьи:

Замещение электрофильное

Электрофильность

Эффект изотопный



© 2024 chem21.info Реклама на сайте