Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Модуль сдвига связующего и наполнителя

    Отклонение экспериментальных зависимостей от описываемых предложенными уравнениями, безусловно, связано с тем, что эффект изменения модуля не может быть сведен только к гидродинамическому влиянию частиц наполнителя. Действительно, для каучуков, находящихся в стеклообразном состоянии, влияние сажи на величину модуля сдвига С было предложено описывать с помощью уравнения, учитывающего адгезию  [c.164]


    Другая причина, как мы полагаем, связана с температурной зависимостью механических свойств полистирола, который в области температур переходного состояния эпоксидной матрицы дильно размягчается. Естественно, что повышение концентрации наполнителя в этом случае тоже должно уменьшать величину действительной части комплексного модуля упругости системы. Обнаруженное уменьшение модуля сдвига с ростом концентрации полистирола и уменьшение среднего времени релаксации может быть истолковано как увеличение сегментальной подвижности в эпоксидной матрице. Поэтому по температурной зависимости экспериментально измеренного фактора сДвига ат и формуле [c.230]

    Из этого уравнения видно, что модуль сдвига композиционного материала совершенно не зависит от свойств наполнителя. Это не должно удивлять. Как отмечено выше, если модуль наполнителя намного превышает модуль матрицы ( / т>20), то наиболее важную роль играет связь на границе раздела фаз. [c.97]

    Влияние наполнителей на Гхр материала проявляется по-разному. Прежде всего наполнители обычно снижают хрупкую прочность. Далее, расширяя релаксационный спектр в сторону длительных времен за счет образования связей наполнитель — полимер они должны повышать предел вынужденной эластичности полимера. Увеличивая модуль упругости резины, наполнители приводят к тому, что растягивающее напряжение, возникающее в образце при его изгибе, будет больше чем в ненаполненном полимере. Каждая из этих причин должна приводить к сдвигу Гхр в сторону более высоких температур, что и подтверждается экспериментом. [c.29]

    На основании теоретических представлений о корреляции между параметрами вязкого течения и упругости твердого тела предполагается, что вязкость жидкости, содержащей наполнитель, и модуль упругости при сдвиге твердого тела, содержащего аналогичным образом распределенный наполнитель, связаны с соответствующими величинами для полимерной матрицы соотношением [c.184]

    Прямое указание на подобие ассоциатов солевых связей доменам жестких блоков в термоэластопластах было сделано Тобольским [2]. Опираясь на ревультаты исследования иономеров (нейтрализованных щелочами сополимеров этилена с акриловой кислотой), в которых были обнаружены ионные кластеры — ассоциаты солевых групп, связанных кулоновскими силами [бЭ, с. 69], он пришел к заключению о неизбежности агрегации солевых групп в металлооксидных вулканизатах в такие же ионные кластеры. Последние, как и жесткие домены в термоэластопластах, являются не только полифункциональными узлами сетки, но и играют роль усиливающего наполнителя. Действительно, кривая изменения модуля сдвига металлооксидного вулканизата карбоксилатного каучука состоит из двух участков участка быстрого уменьшения модуля при переходе через температуру стеклования каучука и широкого участка сравнительно медленного уменьшения модуля (рис, 3,10). Устойчивость кластеров связана с проявлением дальнодействую-щих кулоновских взаимодействий и оно тем выше, чем сильнее разделение зарядов при образовании соли (т, е. чем сильнее выражен ионный характер соли). [c.161]


    С увеличением содержания волокон возрастают плотность пластика, его прочность вдоль волокон, модуль упругости вдоль и поперек волокон, модуль сдвига и др. (рис. IV.13, .14, IV.22), подчиняясь (с- достаточной для инженерной практики точностью) закону аддитивности [62]. При этом показатели механических свойств пластика возрастают с увеличением степени наполнения до определенного предела, обусловленного плотностью упаковки волокон в композиции с сохранением монолитности связующего. Теоретически рассчитано, что наибольшая степень наполнения составляет при тетрагональной укладке волокон 78,5 объемн.%, а при гексагональной — 90,7 объемн. % [63, с. 305]. В реальных пластиках наибольшая степень наполнения значительно меньше и зависит от формы наполнителя и технологии изготовления пластика. В табл. IV.9 и на рис. .14 приведены данные о прочности при растяжении однонаправленных эпоксидных стекловолокнитов в зависимости от степени наполнения. Образцы изготовлены методом жидкофазной ( мокрой ) намотки на плоскую форму. Заготовку разрезали по концам оправки, слои собирали в пакет и прессовали в плиту при давлении 2 кгс/см . [c.143]

    На основании изложенного представляется возможным предложить модели, которые можно использовать для количественного описания свойств наполненной резины с любым из двух типов тонкодисперсного наполнителя (сажа и мел) при любой степени наполнения до 36 объемн.%. Для построения этих моделей используются количественные данные, полученные при измерении динамического модуля сдвига, но сраведливость рассуждения не зависит от типа используемой деформации. Для инертных наполнителей (мел) существует только гидродинамический эффект, обозначенный здесь как / (/, с), предсказанный теорией Ван-дер-Пола и, менее точно, другими авторами. Модуль резин, усиленных наполнителями, к которым относится сажа, определяется не только гидродинамическим эффектом. На эти системы оказывают влияние и два других фактора, один из которых обусловлен наличием прочных связей между каучуком и наполнителем и обозначается здесь как Р (Л). Он определяется [c.97]

    Модификатор с подобным действием заявлен Шварцем А.Г с сотрудниками НИИШПа [307]. Модифицирующая добавка представляет собой композицию, содержащую (%) фенолформальдегидную и/или эпоксидную смолу 25-50 неорганическое соединение Со 1-10 борную кислоту 4-10 и силикатный наполнитель 30-70. Новая модифицирующая добавка обеспечивает высокую статическую и динамическую прочность связи резины с латунированным металлокордом после старения в паровоздушной среде и в растворе Na l при одновременном повышении модуля упругости и твердости резины. При многократном сдвиге коэффициент устойчивости адгезионной проч- [c.269]

    Поскольку модули упругости наполнителя и матрицы сильно различаются, для обеспечения монолнтности пластика необходимы полимерные матрицы, значения предельных удлинений которых значительно превышают среднее удлинение композиционного материала при сохранении достаточных значений прочности. Особое значение имеет прочность при сдвиге, так как именно малая прочность при сдвиге между слоями является одним из основных недостатков армированных пластиков. При этом предполагается, что адгезионная прочность превосходит прочность полимера, т. е. разрущения по границе раздела ие происходит. Напряжения и деформации для квадратичной и гексагональной укладки волокон [1, 6, 22—26] являются функцией отнощения модулей наполнителя и матрицы и плотности упаковки волокон. Если считать, что полимерная матрица и наполнитель подчиняются закону Гука, то при объемной доле волокна от 0,6 до 0,75 отнощение предельных удлинений изменяется от 5 до 15 [26]. Если же учитывать нелинейное вязко-упругое поведение полимерной матрицы, то это отнощение еше больше возрастает. Увеличение предельной деформации связующего за счет снижения его модуля упругости и прочности, как это происходит при пластификации, не приводит к повышению прочности пластика, так как прн уменьшении модуля упругости матрицы ее предельное удлинение, необходимое для сохранения монолитности, возрастает. Таким образом идеальное связующее должно обладать большим удлинением при высоких значениях модуля упругости и прочности, особенно при сдвиге. В работе [22] приведен расчет показателей такого идеального связующего, наполненного ( 1 = 0,7) бесщелочным стеклом и высокомодульным стеклом ВМ-1 (табл. 8.1). Ни одно из известных эпоксидных связующих не отвечает полностьк> приведенным в таблице требованиям [22], однако они могут служить отправной точкой для сравнения различных эпоксидных композиций. [c.212]

    При малых деформациях спектр времен релаксации вулканизата с сажей, обладающей однородной поверхностью, сдвигается в область больших времен, а для актданой сажи с неоднородной поверхностью — резко падает в этой области. При больших деформациях (более 50%) спектр вулканизатов с активными сажами см.ещается в область больших времен релаксации тем больше, чем больше упрочняющее действие сажи. При деформациях более 50% увеличение высоты релаксационного спектра и смещение его в область больших времен при использовании активной сажи обусловлено возникновением упрочненных структур и наличием прочных связей полимер — наполнитель. Повышение температуры ускоряет релаксационные процессы и приводит ос разрушению слабых связей, вследствие чего уменьшается высота релаксационного спектра. Молекулярная теория, позволяющая описать релаксационные свойства наполненных эластомеров, была развита Сато Йосиясу [255]. На основе статистической теории высокоэластичности им выведены формулы для расчета релаксации напряжений, модуля- упругости и механических потерь наполненных полимеров. [c.138]



Смотреть страницы где упоминается термин Модуль сдвига связующего и наполнителя: [c.141]    [c.104]    [c.233]    [c.372]   
Пластики конструкционного назначения (1974) -- [ c.30 , c.31 ]




ПОИСК





Смотрите так же термины и статьи:

Модуль

Наполнители

Сдвига модуль



© 2025 chem21.info Реклама на сайте