Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Усиление полимерными наполнителями

    О механизме усиления полимерными наполнителями [c.5]

    О МЕХАНИЗМЕ УСИЛЕНИЯ ПОЛИМЕРНЫМИ НАПОЛНИТЕЛЯМИ [c.277]

    При усилении каучука полистиролом путем смешения компонентов в виде латексов и последующей совулканизации полистирол образует домены, действующие п как наполнитель, и как узлы структурной сетки [554, 555]. Они распадаются только при высоких напряжениях, что ведет к повышению прочности системы. Измерение увеличения объема наполненных систем при деформировании показало, что оно линейно зависит от деформации и связано с отрывом матрицы от поверхности наполнителя. Увеличение объема больше в тех системах, где больше размер частиц, т. е. меньше их поверхность, так как энергия разрушения или отслаивания прямо пропорциональна площади контакта. Рост прочности наполненных полимерными наполнителями эластомеров объясняется тем, что усиливающие наполнители увеличивают гистерезисные потери тем больше, чем меньше размер частиц. [c.278]


    Таким образом, способность смоляных частиц деформироваться под действием напряжения приводит к распределению напряжения в вершине растущего очага разрушения и к увеличению его критического значения Процессу релаксации напряжения при усилении неорганическими наполнителями способствуют лишь гистерезисные свойства каучука и природа поверхностного взаимодействия, связанного с движением части молекул по поверхности наполнителя В вулканизате, усиленном полимерным наполнителем, уменьшению напряжения способствуют еще релаксационные процессы, происходящие в самой деформированной смоляной частице. [c.79]

    При усилении каучуков термопластами и термореактивными смолами, как и при использовании минеральных наполнителей, важными факторами, определяющими усиление, являются адгезия на границе раздела двух фаз, свойства и структура переходного слоя. Разрушение наполненных термопластами каучуков [375] может происходить по межфазной границе. Общим для минеральных и полимерных наполнителей является то, что существование жестких частиц препятствует разрушению, увеличивая путь разрастания трещины, и способствует передаче напряжений от одной частицы к другой. Эффект усиления зависит от размера частиц. В случае полимерных наполнителей также возможно образование структур в результате взаимодействия частиц друг с другом, однако роль их в усилении еще не выяснена. При достаточной адгезии на границе раздела фаз разрушение наполненного полимера может сопровождаться деформацией частиц полимерного наполнителя, как показано на рис. VI. 2 [375]. Способность частиц полимерного наполнителя деформироваться приводит к перераспределению напряжений в вершине растущего очага разрушения-. В вулканизатах, усиленных полимерным наполнителем, уменьшению напряжения [c.277]

    Усиление каучука наполнителями обусловлено образованием упрочненных структур полимера вследствие адсорбции участков полимерных молекул на частицах наполнителя [50, 53, 54]. Наполненные каучуки более прочны и менее эластичны, чем ненаполненные. Активный наполнитель приводит к образованию в каучуке пространственной структуры, которая при достаточной степени наполнения пронизывает весь объем полимера. При этом важную роль в усилении полимера наполнителем играет природа поверхности и дисперсность частиц наполнителя. Наличие наполнителей в полимере усложняет процессы релаксации напряжения [55]. В связи с этим представляло интерес исследовать влияние природы поверхности и дисперсности частиц наполнителя на процессы релаксации напряжения в литьевых полиуретанах. [c.72]


    Длительное время широко распространена была точка зрения, в соответствии с которой одним из основных требований,, предъявляемых к любому материалу, была его структурная однородность, которая в свою очередь обеспечивала изотропность свойств, считавшуюся всегда положительным фактором. Однако в последнее время было показано, что в реальных условиях эксплуатации распределение напряжений в изделиях из полимерных материалов происходит неравномерно, поэтому ресурсы материала, обеспечивающие, например, сопротивление разрушению, деформации и т. п., также должны мобилизовываться не одинаково по всему объему, а наиболее интенсивно в тех областях, в которых в процессе эксплуатации возникают наибольшие напряжения. Принципиальный подход к решению проблемы распределения наполнителя по заданным направлениям, а следовательно, направленного усиления полимерного материала дан в работах [5, 6]. [c.11]

    Кривые напряжение—деформация, изохронные либо полученные при наклонном ступенчатом возбуждении, неоценимы для определения эффективности усиления высокомодульных наполнителей в композиционных материалах. Обычно это оценивается совершенно несвязанными измерениями модуля (как правило, на изгиб при малых деформациях) и прочности (либо на растяжение, либа на изт иб) композиционного материала и полимерной матрицы, но суммарная экспериментальная ошибка и известный разброс данных прочности могут сделать конечную оценку ненадежной. Другой способ представляет нам точная кривая напряжение — деформация. Она дает как модуль, так и прочность из одного эксперимента и явную визу- [c.100]

    Упорядоченность во взаимном расположении полимерных молекул и высокая степень регулярности построения цепи приводят к ухудшению приспосабливаемости макромолекул к поверхности и взаимодействия с нею. В работе [563] была рассмотрена роль гибкости молекулярных цепей каучука в усилении сажей на основе представлений об изменении конформации цепей при смачивании полимером твердой поверхности. При этом было найдено, что усиление тем более заметно, чем. выше гибкость цепи и чем больше, следовательно, ее контактов с поверхностью может быть реализовано. Проведенные термомеханические исследования свойств наполненных аморфных и кристаллических образцов полистирола также показали, что при введении наполнителя изменения свойств кристаллического полимера менее заметны, чем аморфного того же химического строения. Таким образом, взаимодействие с поверхностью и адгезия зависят не только от химической природы полимера и наполнителя, но и от степени регулярности цепи и молекулярной упорядоченности полимера в надмолекулярных образованиях. Взаимодействие этих образований с поверхностью и их взаимное расположение — весьма важные факторы, определяющие физико-химические и физико-механические свойства наполненного полимера. [c.284]

    Бипластмассы — двухслойные полимерные материалы, обладающие более высокой термостойкостью и большей прочностью, чем исходные пластмассы. Это термопласты (реже реактопласты), усиленные стеклянным наполнителем, или, наоборот, стеклопластики, плакированные термопластами. [c.201]

    Завершено исследование концентрационной зависимости усиления каучуков и резин дисперсным наполнителем. Предложена усовершенствованная математическая модель структурно-механического поведения ТРТ смесевого типа в условиях одноосного растяжения, прогнозирующая влияние эффективной концентрации поперечных химических связей в пластифицированном полимерном связующем, его температуры структурного стеклования, объемной доли, формы и фракционного состава частиц твердых компонентов с учетом возможного их отслоения от связующего на ход кривой растяжения (сжатия). Существенно развита теория оптимизации рецептур ТРТ с использованием компьютерного моделирования. [c.78]

    Существование жестких полимерных частиц препятствует разрыву, при этом путь разрушения увеличивается за счет разрастания трещины по ломаной" кривой и перехода разрушающего напряжения от одной частицы смоляного наполнителя к другой. Чем меньше величина частиц и чем их больше (до определенного предела), тем эффект усиления будет увеличиваться. Однако величина частиц органических наполнителей больше величины частиц неорганических наполнителей. Так, по данным работы величина частиц органического и неорганического наполнителя отличается в ЗООО раз. Известно, что с увеличением размера частиц наполнителя его усиливающее действие уменьшается. При столь высоких размерах частиц органических наполнителей его усили- [c.74]

    В реальном изделии распределение напряжений может происходить иногда по весьма сложному закону. Зная вид эпюры напряжений, можно было бы реализовать внутренние ресурсы прочности в наиболее опасных направлениях. Осуществить это путем направленной ориентации в большинстве случаев не представляется возможным. Возникает потребность перехода от скалярного усиления к тензорному . Так, чтобы обеспечить путем введения в систему усиливающих компонентов увеличение прочности материала в наиболее опасных направлениях, необходимо ориентировать в этих направлениях цепочечные структуры наполнителя. Это частично реализуется, например, при наполнении полимерной системы нитями, расположенными вдоль оси максимальных напряжений. Однако такой способ обеспечивает только линейное направленное усиление материала. [c.303]


    Для проявления эффекта усиления необходимо образование достаточно слабых связей каучук-наполнитель. Развиваемые представления о разгрузке полимерных цепей в процессе деформации наполненного эластомера за счет их скольжения по поверхности частиц наполнителя или частичной десорбции позволяют подойти к рассмотрению молекулярной природы усиления. [c.145]

    В настоящее время изучены некоторые качественные закономерности влияния характера надмолекулярной структуры поли.мера, образующейся под действием частиц наполнителя, на деформацию и разрушение. Прн образовании вдоль частиц аннзодиаметри-ческих структур возникают надмолекулярные образования (например, последовательность сферолитов) в этом направлении материал упрочняется. В связи с этим приобретает особый интерес вопрос принудительного расположения частиц наполнителя в заранее заданных направлениях. Например, при расположении частиц никелевого порошка вдоль магнитного силового поля полимерный материал можно усиливать в тех направлениях, в которых при эксплуатации возникают наибольшие напряжения (рис. 3—5-1). Весьма существенна выявленная возможность усиления частицами наполнителя, специально ориентированными в пространстве, не только кристаллизующихся, но и аморфных полимеров. Однако эффект усиления в этом случае наблюдается при большом содержании наполнителя (когда основная масса полимерного связующего находится в состоянии упрочнения под действием сил межмолекуляр-ного взаимодействия с частицами наполнителя). [c.12]

    Другим принципиальным фактором, влияющим на реологическое поведение наполненных систем, является изменение свойств полимерной среды вследствие адсорбционного взаимодействия частиц с полимером и ограничения молекулярной подвижности цепей в адсорбционном слое. Таким образом, вязкость определяется не только гидродинамическими эффектами, но и механическим усилением матрицы вследствие взаимодействия с наполнителем. [c.184]

    Процессы структурообразования в суспензиях полимеров можно регулировать путем использования различных по природе и строению модифицирующих веществ [511]. При этом адсорбционные взаимодействия ПАВ с поверхностью наполнителя оказывают структурирующее влияние лишь в том случае, когда ПАВ не вытесняется с поверхности наполнителя полимером [512]. На адсорбцию полимера и структурообразование влияет только хемосорби-рованный слой ПАВ. Измерения степени насыщения адсорбционного слоя модификатора в области максимального структурообразования, проведенные на ряде систем [513, 414], показали, что в этом случае модификатором покрывается не вся поверхность частиц наполнителя. Усиливающее действие активированных наполнителей а полимерах и их растворах в определенной области концентраций ПАВ, отвечающих невысокой степени покрытия поверхности частиц, объясняется тем, что усиление таких полимерных систем связано с возникновением двух видов коагуляционных сопряженных разветвленных сеток, образование которых обусловлено двумя видами контактов частиц — частиц друг с другом и частиц с полимером. [c.261]

    Вопрос об усилении полимеров, находящихся в высокоэластическом состоянии, и усилении резин освещен в литературе достаточно подробно [277, 458, 530, 531]. Одной из наиболее существенных черт усиления каучуков сажей является способность сажи образовывать в полимерной среде цепочечные структуры. Это явление было подробно исследовано Догадкиным и сотр. для ряда наполненных каучуков [530, 531]. Ими было установлено, что чем больше степень структурирования, т. е. степень развития цепочечной структуры наполнителя тем сильнее проявляется эффект усиления. Образование цепочечных структур активного наполнителя в среде каучука связано с тем, что поверхность частиц активного наполнителя энергетически неодинакова. Энергия взаимодействия частиц наполнителя в местах их контакта больше, чем энергия взаимодействия на границе раздела каучук—наполнитель. Усиливающее действие цепочечных структур объясняется тем, что они являются той матрицей, на которой ориентируются молекулы каучука. Чем больше развита цепочечная структура, тем в большей степени сказывается ее ориентирующее действие на цепи каучука. Образование таких структур активного наполнителя является самостоятельным фактором усиления каучука, поскольку при разрушении резин, содержащих активные наполнители, плоскость разрыва пересекает более прочные связи между частицами наполнителя, что препятствует разрушению. [c.265]

    При рассмотрении роли адгезии необходимо учитывать, что наибольшее значение при усилении имеет молекулярная слагающая адгезии. Деформация наполненных материалов обычно происходит в условиях, далеких от разрушения. Следовательно, усиление существенно зависит от условий контакта полимера и наполнителя, а также от условий смачивания поверхности наполнителя, которые прежде всего определяются конформацией полимерной цепи. Это подтверждено нашими данными об изменении температур стеклования пленок наполненных полимеров, отлитых из растворов в различных растворителях, в которых цепи находились в различных конформациях. Если же па поверхность наносить не раствор смолы, а непосредственно жидкую смолу, то смачивание ею поверхности и геометрия последней определяют условия роста полимерной цепи на поверхности в ходе отверждения, а от них зависят свойства полимера. При этом надо помнить, что смачивание поверхности жидкой смолой и раствором происходит неодинаково из-за различий в поверхностном натяжении. При испарении растворителя или отверждении смолы условия смачивания и взаимодействия полимера и поверхности ухудшаются, потому что жесткая полимерная цепь не может та приспособиться к поверхности, как молекула малого размера. [c.282]

    Смеси синтетических латексов с дисперсиями наполнителей и пигментов используют при изготовлении полимерных покрытий, нетканых материалов, различных резинотехнических изделий и др. Однако при этом часто наблюдается значительное снижение или отсутствие эффекта усиления, характерного для сухих смесей усиливающего наполнителя с полимером. Причину этого явления видели в том, что присутствующие в этих смесях поверхностно-активные вещества ослабляют взаимодействие полимера с наполнителем [1]. [c.193]

    Среди других факторов, влияющих на усиление резин, отмечаются [539] форма и размер частиц наполнителя, характер их распределения в полимерной матрице, смачивание наполнителя полимером и адгезия полимера к наполнителю. Усил ивающая способность тонкодисперсных наполнителей может быть наиболее полно реализована только тогда, когда достигнуто их равномерное распределение в среде. Различие в форме частиц проявляется главным образом в их способности образовывать цепочечные и разветвленные структуры. Смачиваемость является мерой совместимости наполнителя и полимера и сильно влияет на свойства вулканизатов. Плохое смачивание каучуком агломерата частиц приводит к ослаблению материала из-за образования структурных дефектов и уменьшения содержания наполнителя в соседних областях. [c.271]

    В технологии переработки полимеров для получения материалов с требуемым комплексом свойств идут по пути создания композиционных полимерных материалов (КПМ), в которых свойства конечного продукта достигаются за счет направленного сочетания компонентов. Возможности для этого в полимерах поистине огромны. К композиционным материалам относятся стеклопластики, усиленные эластомеры, ударопрочные пластики, пластмассы, армированные органическими волокнами и наполненные порошкообразными наполнителями, многокомпонентные полимерные смеси, комбинированные материалы, термоэластопласты и полимербетоны. Практическая важность этих материалов обусловлена нелинейностью и синергизмом свойств, которые являются следствием их двухфазной структуры. [c.29]

    Технология полимеров, как и других материалов, уже давно идет по пути создания композиционных материалов, в которых за счет направленного сочетания компонентов стремятся получить требуемый комплекс свойств. Возможности для этого в полимерах поистине огромны. Стеклопластики, усиленные эластомеры, ударопрочные пластики, пластики, армированные неорганическими и органическими волокнами и наполненные порошкообразными наполнителями, многокомпонентные полимерные смеси, термоэластопласты, полимербетоны — вот далеко не полный перечень композиционных полимерных материалов, широко применяемых в различных областях современной техники. Однако несмотря на достаточно широкое использование композиционных полимерных материалов, научно обоснованные принципы создания таких материалов с заданным комплексом свойств все еще отсутствуют. Это особенно относится к материалам, содержащим лишь полимерные компоненты, таким как смеси полимеров, блок- и привитые сополимеры и др. В связи с этим необходимо отметить, что в последние годы чрезвычайно активно проводятся работы, направленные на выяснение физико-химических факторов, обусловливающих совместимость и сегрегацию компонентов и формирование характерной микрогетерогенной структуры и морфологии, особенностей сопряжения микро- и макрофаз и их устойчивости при воздействии температур, механических напряжений и других факторов. Это позволяет надеяться, что такие принципы будут в ближайшее время разработаны. [c.13]

    Усиление каучуков термо- и реактопластами проводится уже давно. Этому вопросу, в частности, посвящена монография [375]. Однако если технология получения армированных полимерными волокнами материалов в принципе аналогична применяемой для получения стеклопластиков, то при усилении каучуков введение по лимерного компонента осуществляется либо путем сополимериза ции (и в этом случае звенья усиливающего полимера входят в мо лекулярную цепь), либо путем смешения тем или иным способом После смешения компонентов проводится вулканизация каучука Поэтому наполненные или усиленные полимерными наполнителя ми каучуки следует рассматривать как смеси полимеров. Однако так как в большинстве полимерньг) систем отсутствует истинная термодинамическая совместимость, т. е. взаимная растворимость компонентов, то все смеси являются двухфазными гетерогенными системами [371, 376]. Поэтому смеси двух несовместимых полимеров (в отличие от более редкого случая совместимых смесей) можно рассматривать как системы, содержащие полимерный наполнитель. Здесь можно ввести следующее разграничение между смесью двух полимеров и полимером, наполненным полимерным наполнителем. Для смесей полимеров характерна структура, в которой обе фазы непрерывны, и поэтому нельзя установить, какой полимер является дисперсионной средой, а какой — дисперсной фазой [376]. К наполненным системам следует отнести системы с из- [c.196]

    При изготовлении смесей с применением полиэтилена и неорганических наполнителей следует учитывать возможность синтеза привитых полимеров полиэтилена и сажи, которые препятствуют возникновению высокоорганизованных структур (сферолитов и монокристаллов). В этом случае формируются лишь пачечные структуры Аналогичный эффект получен в случае диспергирования каучуко-полиэтиленовых смесей, а также других каучукосмоляных систем с неорраническими наполнителями. Наличием привитых полимеров сажи и термопластичного полимера можно, вероятно, объяснить уменьшение эффекта усиления каучука полимерным наполнителем в присутствии неорганического наполнителя. [c.76]

    Особенности этих систем заключаются прежде всего в том, что адгезионные явления на границе раздела двух полимерных фаз существенно отличны от явлений на границе полимер — твердое тело с высокой поверхностной энергией. Полимеры-наполнители и полимерные среды (или связующие), как и все полимерные системы, характеризуются низкими значениями поверхностной энергии, и поэтому смачивание поверхности наполнителя полимерным связующим может быть неполным. В результате этого условия контакта частиц со связующим при формировании системы оказываются хуже, чем в системах с наполнителем, имеющим высокую поверхностную энергию. Это не означает, разумеется, отсутствия адсорбционного взаимодействия на границе раздела фаз. Прочность связи полимерных частиц с полимерной фазой во многих случаях значительно выше, чем частиц неорганических наполнителей, а для смесей полярных полимеров адгезия может быть столь значительной, что это приводит к высокой стабильности системы, т. е. к псевдосовместимости [381]. В системах с полимерными наполнителями значительную роль в усилении играет диффузионный механизм адгезии [34]. [c.197]

    Способность наполнителя поглощать энергию деформирования увеличивается с ростом адгезии, поэтому роль последней в механизме усиления очень велика. Чем ближе по параметрам раство-5ИМ0СТИ (т. е. энергии когезии) каучук и полимерный наполнитель 556], тем резче повышается сопротивление раздиру при увеличении содержания наполнителя, что определяется адгезией двух компонентов. Влияние наполнителя на энергию разрушения связывают также с тем, что частицы действуют как центры рассеяния энергии. Вместе с тем при использовании диспергированного полимера в качестве наполнителя повышается вязкость матрицы по аналогии с понижением температуры, что также сказывается на свойствах системы. Однако образование химической связи полимерной среды с наполнителем (например, в сополимере бутадиена со стиролом, где стирольные участки как бы играют роль наполнителя) может оказывать меньшее влияние на прочность при растяжении, чем наличие в бутадиеновом каучуке равного количества полистирола. [c.278]

    В случае наполнителей с высокой удельной поверхностью экспериментальные значения модулей упругости превосходят значения, предсказываемые аддитивным уравнением для нижнего предела действительно, один из критериев усиливающего наполнителя является наглядной демонстрацией такого отклонения [130, гл. 18] (см. также разд. 10.10 и 10.11). С другой стороны, полимеры, содержащие частицы крупных размеров (с низкой удельной поверхностью), обнаруживают свойства, соответствующие нижнему пределу (см. разд. 12.1.1.1.). Таким образом, высокоэффективные наполнители, например некоторые сажи в каучуках, отличаются от других наполнителей степенью усиления полимерной матрицы. При этом степень усиления больше, чем ожидается, если учитывать только одну адгезию. Это явление, как отмечено выше, связано с высокой адсорбционной способностью и доста точно малыми размерами частиц сажи, позволяющими им внед- [c.372]

    Направления, по которым возникают максимальные напряжения, далеко не всегда являются прямолинейными. Кроме того, усиление тонко-дисперсным наполнителем всегда носит скалярный характер, т. е. увеличение прочности не зависит от направления. В последнее время нами предложен способ усиления полимерных систем в строго заданном направлении [19]. Смысл этого способа сводится к тому, что частицы тонкодисперсного усиливающего наполнителя располагают вдоль силовых линий магнитного, электрического или механического полей. В кристаллических полимерах упрочнение достигается при малых концентрациях, так как частшщ являются центрами кристаллообразования (рис. 8), В термореактивных некристаллических полимерах усиление наблюдается тогда, когда ориентирующееся на поверхности частиц полимерное связующее образует в системе непрерывную трехмерную сетку ориентированных макромолекул. [c.215]

    Механизм усиления полимеров наполнителями изучен недостаточно и обычно свя1ывается с возникновением прочною ал1 езионного взаимодействия на границе полимер-наполнитель и ориентированным состоянием тонких полимерных пленок на границе раздела фаз. Поэтому дальнейшее изучение влияния наполнителей на процесс пленкообразования, структуру и свойства полиэфирных покрытий имеет большое научное и практическое значение. [c.163]

    ТЕПЛОСТОЙКОСТЬ полимеров, способность полимерных материалов не размягчаться (сохранять жесткость) при Повышении т-ры. Т. зависит от хим. строения полимера, содержания низкомол. добавок (пластификаторов и наполнителей). При усилении межмолекулярных взаимод. или(и) увеличении жесткости цепн Т. полимера повышается. Т. определяется температурной зависимостью модуля упругости материала и характеризуется т-рой, при к-рой модуль снижается до иек-рого значения, когда материал перестает быть жестким. С увеличением нагрузки Т. снижается. [c.531]

    Образование связей между каучуком и наполнителем, возможно, я вляется одним из факторов, определяющих эффект усиления. Гесс и Форд [7] с помощью электронной микроскопии показали, что в случае слабоусиливающих саж полимерная матрица в процессе деформации отделяется от частиц наполнителя, тогда как в случае усиливающих саж такого разделения практически не наблюдается. [c.132]

    Армированные, то есть укрепленные, усиленные пластики являются гетерофазными системами, состоящими из волокнистого наполнителя и полимерного связующего. Непрерывные волокна усиливают ряд свойств полимера. Прежде всего армирование повышает прочность, а также придает полимерным материалам некоторые особые качества увеличенную электро- или теплопроводность и теплостойкость, вибродемпфирующие или радиотехнические свойства, размерную стабильность изделий и др. Особенности технологии и свойств армированных пластиков в лаконичной и конкретной форме изложены в [6, с. 204]. [c.56]

    Поскольку речь идет о наложении ряда различных эффектов, Краусс хчитает естественным отсутствие корреляции между содержанием связанного каучука и усилением. Утверждение о том, что большое содержание связанного каучука приводит к улучшению физических свойств, в общем виде неверно, однако по количеству связанного каучука качественно можно судить о взаимодействиях между наполнителем и каучуком. Краусс выделяет следующие типы взаимодействий адсорбция полимера на поверхности наполнителя взаимодействие с полимерными радикалами в процессе переработки запаздывающее взаимодействие с теми же радикалами, продолжающееся после переработки взаимодействие со свободными радикалами, образующимися в результате термического распада молекул полимера или реакционноспособных групп. [c.252]

    Рассматривая проблему усиливающего действия наполнителей в резинах в целом, Маллинз [270] отмечает, что усиление является результатом следующих наиболее важных изменений в резине повышении жесткости, размягчения вследствие предварительной деформации, увеличения прочности. Повышение прочности достигается в результате увеличения механического гистерезиса и притупления вершин разрастающихся трещин, а также повышения энергии, рассеиваемой в объеме резины, по линии разрыва. Механический гистерезис резин увеличивается также вследствие разрушения агломератов частиц наполнителя, необратимого перемещения частиц наполнителя и нх агломератов, изменяющего конфигурацию полимерной сетки. Развитие этих процессов в большой степени зависит от скорости деформации и температуры. О влиянии на способность усиливать резину таких факторов, как размер, форма и химическая природа частиц наполнителя, степень их диспер-гирования, склонность к агломерации и образованию структур в каучуковой среде, природа поверхности наполнителя, можно судить по их воздействию на жесткость, гистерезис и размягчение резин после предварительной деформации. [c.272]

    Исследование процессов структурообразования в системах полимер—н аполнитель имеет важнейшее значение как для разработки теории действия активных наполнителей — теории усиления каучуков в резиновых смесях, — так и для новой технологии производства полимерных материалов. [c.403]

    При выборе тaбплизиpyющeii системы необходимо учитывать возможность взаимного влияния различных И. п. Л1. Так, нек-рые антиозонанты ускоряют фото-окислительпую деструкцию полимеров. Ряд красителе обладает свойствами эффективных светостабилизаторов пек-рые наполнители (нанр., сажа) ингибируют окисление пластмасс и резин. Ненасыщенные пластификаторы могут взаимодействовать со стабилизатором и подавлять его действие. В ряде случаев проявляется взаимное усиление действия двух и болое стабилизаторов (так наз. синергич. эффект). Нек-рые стабилизаторы (иапр., ироизводные вторичных ароматич. аминов п га-фснилендиамииа) обусловливают изменение цвета белых и светлоокрашенных полимерных материалов нрп их эксплуатации в условиях светового воздействия. См. также Стабилизаторы, Стабилизация. [c.421]

    Если эластомер действительно прочно связан или адсорбирован на поверхности наполнителя, то подвижность его макромолекул, по-видимому, должна быть ограничена. В частности, как температура стеклования, так и термический коэффициент расширения, а также свободный объем должны, по-видимому, зависеть от степени усиления. Как ни странно, эти свойства, как оказалось, сравнительно умеренно зависят от степени наполнения. Так, Краус и Грувер [498] обнаружили, что увеличение бутадиен-стирольного сополимера на каждые 10 ч. углеродной сажи, приходящейся на 100 ч. каучука, составляет только 0,2 °С, а термический коэффициент расширения полимерного компонента в высокоэластической области не зависит от количества наполнителя. Хотя отмечено [1002], что Tg силиконового каучука возрастала на 8°С при введении 40 ч. усиливающего кремнезема на 100 ч. каучука, тем не менее этот эффект также следует считать довольно умеренным. [c.266]


Смотреть страницы где упоминается термин Усиление полимерными наполнителями: [c.69]    [c.121]    [c.304]    [c.126]    [c.145]    [c.171]    [c.525]    [c.522]    [c.371]   
Физическая химия наполненных полимеров (1977) -- [ c.277 ]




ПОИСК





Смотрите так же термины и статьи:

Наполнители

Усиление



© 2025 chem21.info Реклама на сайте