Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидродинамического потока влияние

    На интенсивность теплообмена через стенку реактора оказывает влияние режим движения потока (распределение скоростей, степень турбулентности). Вследствие отказа от гидродинамического подобия влияние режима движения будет различным в модели и образце. Поэтому удобно представить этот процесс суммарно как конвекцию теплоты и характеризовать коэффициентом теплоотдачи а. [c.465]


    Наличие газов с различной молекулярной массой (Н2, СО2, Н2О, СН4) приводит к заметному влиянию термодиффузии и диффузионной теплопроводности на скорость превращения. Объем реакционной смеси увеличивается примерно в 1,5 раза, вследствие чего от поверхности появляется дополнительный поток. Однако образующийся водород быстрее других компонентов диффундирует от поверхности катализатора, тем самым уменьшается гидродинамический поток от поверхности. Поэтому вклад стефановского потока составляет менее 10%. [c.94]

    Влияние статического давления на эффективность кавитации может быть использовано для разделения вкладов в интенсификацию массообменных технологических процессов действия гидродинамических потоков и собственно кавитации. [c.52]

    В ряде случаев твердые частицы (сорбенты, катализаторы) обладают внутренней пористостью евн. Во внутренних порах гидродинамические потоки отсутствуют внутренняя пористость оказывает влияние лишь на плотность твердых частиц. [c.11]

    Если хотя бы один из двух контактирующих электролитов твердый, то межфазная граница раздела механически стабильна. Она также стабильна при контакте двух несмешивающихся жидких электролитов, расположенных горизонтальными слоями жидкость с меньшей плотностью—над жидкостью с большей плотностью. Если же использовать смешивающиеся жидкости, то под влиянием гидродинамических потоков начнется их смешение и граница быстро исчезнет. Такие границы могут быть стабилизированы с помощью разделительной пористой диафрагмы, которая затрудняет или полностью предотвращает жидкостные потоки и вместе с тем не нарушает проводимости (миграции ионов) между электролитами. В лабораторной практике жидкости часто разделяют стеклянным краном. Можно [c.85]

    Учет влияния различия плотностей твердой и жидкой фаз. Гидродинамические потоки в расплаве или пересыщенном растворе могут иметь различное происхождение так, тепловая конвекция возникает из-за различия плотностей разных участков среды, которое в свою очередь вызвано неоднородностью температуры неоднородность концентрации тоже приводит к появлению разности плотностей и соответственно концентрационных токов гидродинамические потоки создаются путем принудительного перемешивания они сопровождают кристаллизацию и в том случае, когда плотность кристалла отлична от плотности жидкой среды. О тепловой конвекции и концентрационных токах говорится в гл. Vni. Различие плотностей жидкой и твердой фаз легко учесть в рамках задачи Стефана его влияние на рост кристалла рассматривается в настоящей главе подробнее, чем в гл. VHI. [c.400]


    Известно, что сила гидравлического сопротивления, действующая на частицу, пропорциональна для турбулентного режима квадрату скорости и плотности среды — w po- При классификации капельными жидкостями в сравнении с газами скорость потоков обычно меньше на два порядка, а плотность — больше на три порядка. Поэтому произведение w po для жидкостей значительно меньше, и в воздушном потоке влияние гидродинамического следа проявляется сильнее. Это приводит в газовых потоках, в результате интенсивного движения частиц в сторону гидродинамического [c.71]

    Уравнения (I, 56 и 57) позволяют с достаточной точностью рассчитывать температуру поверхности катализатора при окислении двуокиси серы. В других случаях иногда необходимо учитывать влияние термодиффузии и гидродинамического потока к поверх-ности , возникающего в результате изменения объема при реакции и неравенства коэффициентов диффузии. [c.73]

    В режиме идеального смешения концентрации реагентов постоянны по всему объему аппарата. Непрерывный переход от резина идеального вытеснения к режиму идеального смешения можво проследить в рамках диффузионной модели, решая уравнение (VI.14) или (VI.15) с граничными условиями (VI.27) и оценивая изменение степени превраш ения и статистических характеристик распределения при уменьшении числа Пекле. Режиму идеального вытеснения соответствует предельный случай Ре оо, а режиму идеального смешения — Ре 0. Все промежуточные режимы иногда определяют как режимы неполного смешения. Согласно сказанному выше, диффузионная модель далеко не всегда пригодна для описания работы реакторов в режиме неполного смешения. При расчет трубчатых реакторов х)на оказывается справедливой только ври больших числах Пекле, когда гидродинамический режим реактора приближается к режиму идеального вытеснения при этом расчет реактора в приближении идеального вытеснения обеспечивает обычно достаточную для технологических целей точность результатов, и влияние продольного перемешивания потока может быть учтено как малая поправка. При расчете реакторов малой протяженности, где продольное перемешивание особенно заметно и могут наблюдаться сильно размазанные функции распределения, необходимо уже учитывать реальную физическую картину процессов переноса вещества, так как диффузионная модель в этих условиях не применима. [c.213]

    При напорной флотации система ввода газовой фазы может быть выполнена в трех вариантах. В первом воздухом насыщается весь поток очищаемой сточной воды, во втором — только его часть, в третьем — часть осветленной воды, которая возвращается на вход флотатора (рециркуляция). Воздух обычно подают через эжектор, который устанавливается на обводной линии между всасывающим и напорным патрубками центробежного насоса сточной воды. Диапазон регулирования ограничен сверху снижением производительности и напора насоса, происходящих при подаче 4—5% воздуха от объема сточной воды. Дальнейшее увеличение количества подаваемого воздуха может привести к срыву насоса. Увеличить концентрацию газовой фазы можно, дополнительно подавая воздух в напорный резервуар, который служит для отделения нерастворившихся пузырьков от воды и проведения процесса хлопьеобразования. В схеме с рециркуляцией можно регулировать концентрацию газовой фазы в флотаторе изменением расхода воды в контуре рециркуляции. Однако значительное увеличение этого потока снижает производительность флотатора и нарушает его гидродинамический режим. Влияние регулирующего воздействия компенсируется изменением расхода поступающей воды. [c.108]

    Графов Б. М. О влиянии периодически изменяющегося во времени гидродинамического потока на предельный диффузионный поток.— Электрохимия, 1968, т. 4, с. 542—545. [c.315]

    Скорость реакции определяется лишь скоростью переноса реагирующего вещества к поверхности частицы и может быть увеличена только при изменении гидродинамического режима. Это связано с тем, что процессы обмена между газовым потоком и внешней поверхностью частиц материала определяются не только диффузией, но и конвекцией. С развитием турбулентности потока влияние конвективной составляющей растет, и диффузионный перенос преобладает лишь в сравнительно тонкой ламинарной пленке газа у поверхности частиц. Несмотря на небольшую толщину этой пленки, диффузия в пограничном слое протекает значительно медленнее конвекции вещества поэтому общая скорость переноса вещества в основном лимитируется диффузией, хотя падение концентраций может происходить и в турбулентной зоне. [c.181]

    Для того чтобы ориентирующее влияние поля и гидродинамических потоков конкурировали, т, е. стремились ориентировать молекулы в различных направлениях, необходимо, чтобы диэлектрическая анизотропия Аб< 0. Поэтому домены Капустина — Вильямса всегда наблюдаются в нематиках с Л8< 0, а для их наблюдения при Де>0 требуется выполнение еще ряда требований на условия эксперимента. В конечном итоге домен- [c.50]


    Теплоотдача к кипящему агенту в трубном пространстве осуществляется путем ядерного кипения и двухфазной конвекции в зоне кипения жидкости. В начале зоны кипения пузырьки пара, оторвавшиеся от стенок трубки, тонкой цепочкой движутся в ядре потока вверх. Такой гидродинамический режим называется пузырьковым потоком. В этой области теплопередача происходит только за счет кипепия и практически не зависит от двухфазной конвекции. По мере увеличения паросодержания (доли отгона) тонкая цепочка пузырьков пара увеличивается в объеме и сливается в большие стержни (поршни) пара, которые двигаются вверх в ядре потока. Такой гидродинамический режим называется стержневым потоком. В этой области теплопередача происходит как за счет кипения, так и за счет двухфазной конвекции. При дальнейшем увеличении паросодержания стержни пара сливаются в сплошной поток, несущий в себе капли жидкости. У стенок трубок остается тонкая пленка жидкости, которая имеет форму кольца (если смотреть в торец трубки). Такой гидродинамический режим называют кольцевым потоком. В этой области теплопередача практически осуществляется только двухфазной конвекцией. Влияние кипения на теплопередачу невелико. [c.97]

    Уравнение (П1.82) является математической моделью неустановившегося потока жидкости в слое насадки и может быть использовано для определения коэффициента продольного переноса В и среднего времени пребывания т при типовых гидродинамических возмущениях индикатора. В этом уравнении коэффициент Оц является функцией лишь проточной части системы. Застойная часть системы, представляемая статической удерживающей способностью, не оказывает существенного влияния на В . [c.77]

    Сначала рассмотрим более общий случай исключения влияния межфазного массопереноса. Характер температурной зависимости (энергия активации) не может служить в жидкофазных реакциях надежным критерием оценки по ряду причин. Вследствие возможного клеточного диффузионно-контролируемого механизма или ионного характера реакции истинная энергия активации реакции может быть малой. Далее, как указывалось в предыдущем разделе, наблюдаемая температурная зависимость может быть следствием изменения коэффициентов распределения реагентов между фазами. Вблизи критической области такое влияние может быть особенно сильным и сказывается такнлб на соотношении объемов фаз. Наконец, в жидкостях, в отличие от газов, сам коэффициент диффузии зависит от температуры экспоненциально, причем эффективная энергия активации диффузии в вязких жидкостях составляет заметную величину. Поэтому обычно о переходе в кинетическую область судят ио прекращению зависимости скорости реакции от интенсивности перемешивания или барботажа. Здесь, однако, есть опасность, что при больших скоростях перемешивания может наступить автомодельная область, а ири очень интенсивном барботаже измениться гидродинамический режим. В результате объемный коэффициент массопередачи может стать инвариантным к эффекту перемешивания и ввести, таким образом, в заблуждение исследователя. В трехфазных каталитических реакторах этот прием более надежен ири условии неизменности соотношения фаз в потоке. [c.74]

    Нетрудно убедиться, что функции А (>fi) и при любых возможных значениях плотностей фаз Рс и рд и концентрации всегда меньше единицы. Поскольку в качестве масштабов расстояния и скорости выбраны максимально возможные значения этих переменных, то выражения, стоящие в квадратных скобках в левой части уравнения движения (2.74), также всегда меньше единицы. Отсюда следует, что безразмерная величина х является мерой относительного влияния инерционных членов в уравнении движения. Она представляет собой отношение расстояния, характеризующего гидродинамическую стабилизацию частиц в потоке. Ар, к характерному линейному размеру потока Я. Если х 1, то в потоке быстро устанавливается стационарное (равновесное) движение частиц и инерционными членами в уравнении движения можно пренебречь. Наоборот, при 1 инерционные члены в уравнении движения становятся преобладающими.  [c.89]

    Традиционный подход к решению задач массо- и теплообмена заключается в исследовании уравнений конвективного переноса, в которых компоненты скорости жидкости определены из рассмотрения соответствующей этому процессу гидродинамической задачи. При этом не учитывается влияние массовых и тепловых потоков на гидродинамические характеристики течения. Для экстракции, абсорбции и ряда других процессов такие приближения дают удовлетворительные результаты. Однако в ряде задач теплообмена, связанных с испарением или конденсацией капель, массообмен может оказывать существенное влияние на гидродинамику потока. [c.168]

    Приближенные модели переноса. При изучении экстракции и абсорбции расчет процессов массо- и теплообмена часто проводят, исходя из предположения, что гидродинамика существенно влияет на массо- и теплоперенос, в то время как тепловые и диффузионные потоки слабо меняют характер течения. Это облегчает задачу, но, к сожалению, не избавляет от математических трудностей, связанных с учетом сложных гидродинамических условий, в которых протекают массо- и теплообменные процессы. Развитие теории массо- и теплопереноса щло по пути учета влияния гидродинамических факторов с помощью построения различных приближенных моделей. [c.172]

    По-видимому, в тех случаях, когда константа скорости реакции немала, гидродинамические изменения в потоке не успевают оказать заметного влияния на характер химического взаимодействия реагентов и ускорение переноса определяется главным образом за счет химической реакции. Для медленных реакций диффузия и химическая реакция протекают одновременно, и в этих условиях фактор ускорения будет зависеть от гидродинамики потока, В частности, расчеты Крылова [400] для реакции первого порядка показьшают, что при А 1Л(1 <1 [c.275]

    Конструкции колонных аппаратов хорошо описаны в ряде монографий и учебных пособий, поэтому ограничимся лишь их краткими характеристиками, существенными для постановки и решения нашей основной задачи — выяснения гидродинамической структуры взаимодействующих потоков и ее влияния на эффективность аппаратов. [c.15]

    Отвлекаясь от обсуждения гидродинамических особенностей самого процесса и постановки задачи, заметим, что с точки зрения кинетики процесса основной результат состоял в том, что расчетное положение видимой границы фронта пламени существенно зависит как от правильного выбора уровня адекватности кинетической модели в зоне активного процесса, так и от кинетической предыстории смешивающихся потоков. Для выяснения влияния адекватности модели па точность описания отрыва были проведены контрольные расчеты для моделей Ферри [95] адекватности = 0,57 и 13-стадийной модели Г (/ = = 1—9, 11—13, 24) Q = 0,72 при вариации значений к . Из результатов расчета следует, что концентрации НОа и Н Ог достигают столь значительных величин, что ими пренебречь нельзя без существенного ухудшения точности аппроксимации эксперимента. (Экспериментально длина отрыва диффузионного пламени фиксировалась по положению видимой границы фронта пламени на негативах, а воспламенение — по резкому подъему температуры). [c.354]

    Исследования влияния внешних факторов на процесс ЭОФ (давления, гидродинамической обстановки, температуры, концентрации и др.) показали, что величина К-р изменяется в зависимости от этих факторов так же, как и селективность процесса обратного осмоса, проведенного в идентичных условиях. Таким образом, условия, в которых можно осуществить процесс ЭОФ, неразрывно связаны с обратноосмотическим потоком воды через поровое пространство заряженных электрическим полем обратноосмотических полупроницаемых мембран, со строением ДЭС в поровом пространстве и поверхностных над ним слоях. Поэтому процесс избирательной проницаемости ионов и молекул через заряженные электрическим полем обратноосмотические мембраны можно проводить только при давлении, превышающем осмотическое давление раствора. [c.200]

    На величину коэффициента теплоотдачи в ряде случаев влияет поток пара от влажной поверхности, вызывающий нарушение гидродинамической пограничной пленки у поверхности. Это влияние иногда учитывают е помощью параметрического числа Гух-мана Т-Тт)1Тт- [c.514]

    Исследование кинетики изотермических нроцессов, не осложненных внешней диффузией, в простейших интегральных реакторах, видимо, не связано со значительными ошибками, если диаметр зерен катализатора не превышает 74о диаметра трубки, а длина слоя и скорость потока таковы, что исключено заметное влияние продольного перемешивания. Практически приходится, однако, брать диаметр зерна равным примерно 7в диаметра трубки. Независимость хода процесса от внешнедиффузионных и гидродинамических факторов может быть проконтролирована сравнением результатов, полученных нри одинаковых временах контакта, но с различными линейными скоростями потока газа. Более надежные данные могут быть получены в интегральных реакторах, специально предназначенных для кинетических исследований. [c.406]

    В [40] анализ схем обтекания базируется на различии степеней при Не, входящих в критериальное уравнение теплоотдачи. Однако такое сравнение схем по интенсивности теплообмена лишь отвечает на вопрос о возможном существовании сопряженных Не потоков, но без учета влияния гидродинамических характеристик не решает задачу сравнения различных схем. [c.81]

    Уменьшение вязкости при увеличении температуры широко используется, но имеет предел, связанный со свойствами жидкости и пропитываемых систем. Для однородной жидкости ее вязкость от каких-либо воздействий существенно не изменяется. В неоднородных и неньютоновских жидкостях на вязкость могут повлиять электрические и гидродинамические явления. Вязкость полимеров (расплавов, растворов) может уменьшаться также в результате деструкции. Казалось бы, что наиболее простым является влияние на гидродинамику фильтрационного потока. Поскольку толщина пограничного слоя в колеблющихся потоках уменьшается с ростом частоты по закону [c.127]

    Пример гидродинамическое исследование влияния изменения скорости вращения мешалки и ее конструкции на степень перемешивания на установке непрерывного действия в реакторе с мешалками двух типов первая - многорядная трехлопастная пропеллерного типа и вторая - выполненная по типу безло- пастной с тремя проточками по длине мешалки английской фирмы "Ай-Си-Ай". Длина мешалок 570, диаметр 56 мм. В качестве модельного вещества служила фракция алкилата с плотностью 620 кг/м (плотность этилена при 473 К и давлении 150 МПа составляет 450 кг/м ). В качестве индикатора использовали химически чистый толуол. Скорость потока алкила-та составляла 12 и 48 л/ч, что соответствовало продолжительности пребывания в реакторе 4 и 1 мин. Скорость вращения мешалок варьировали от 1000 до 2500 об/мин. [c.155]

    Экспериментальное изучение пульсационных насадочных экстракторов проводилось в дальнейшем отечественными и зарубежными исследователями [192—206], получившими эмпирические зависимости по гидродинамике и массопередаче. Однако большинство зависимостей получено в результате обработки ограниченного числа экспериментальных данных и не носит обобщающего характера. Результаты работ свидетельствуют о том, что при интенсивных гидродинамических режимах влияние объемного соотношения потоков фаз, нагрузки и смачиваемости насадки на эффективность пульсационной колонны (в отличие от гравитационных насадочных колонн) относительно мало. [c.330]

    Необходимо отметить, что ультразвуковая обработка жидкого металла оказывает ускоряющее влияние на окончательный этап процесса дегазации за счет действия двух факторов. Во-первых, в поле ультразвуковой волны происходит объединение (коагуляция) нескольких пузырьков благодаря гидродинамическим потокам (силы Бернулли) и акустическим течениям (силы Бьер-кнесса). Во-вторых, при колебательном движении жидкости, как правило, снижается ее вязкость. По-видимому, явление снижения кажущейся вязкости — тиксотро-пия — способствует ускорению всплытия на поверхность пузырьков газа. [c.453]

    Концентрацию газовой фазы можно увеличить, дополнительно подавая воздух в напорный резервуар, который применяется для отделения нерастворившихся пузырьков от воды и проведения процесса хлопьеобразования. При применении схемы с рециркуляцией концентрацию газовой фазы во флотаторе можно регулировать изменением расхода воды в контуре рециркуляции. Однако п ж значительном увеличении этого потока снижается производительность флотатора и нар>тиается его гидродинамический режим. Влияние регулирующего воздействия компенсируется путем соответствующего изменения расхода поступающей воды. [c.219]

    Все многообразие процессов и явлений, наблюдаемых при трении твердых тел, заключено между трением ювенильных поверхностей и гидродинамическим трением. Под трением ювенильных (идеально чистых) поверхностей понимают трение поверхностей при полном отсутствии между ними третьей фазы, способной выполнять функцию смазочной среды. Термин гидродинамическое трение определяет процессы, происходящие в присутствии смазочной среды, поведение которой подчиняется законам гидродинамики ламинарного потока жидкости, в первую очередь уравнению Ньютона. Этот термин определяет процессы трения, характеризуемые вязкостью как важнейщим физико-химическим свойством смазочной среды. Между двумя указанными предельными состояниями фрикционной системы, т. е. между сухим и жидкостным трением, существует гранич1н0е трение , наблюдаемое в том случае, когда тонкий слой смазочной среды, разделяющий трущиеся поверхности, находится в границах их влияния на смазочное вещество. [c.223]

    Теоретические исследования силы сопротивления, действующей на твердую сферическую частицу, которая стационарно осаждается в дисперсной смеси и испытывает влияние окружаюншх частиц, начались ра-тами Смолуховского [22]. Как известно, точное решение этой задачи принципиально невозможно из-за необходимости удовлетворения граничных условий сразу на нескольких поверхностях. Поэтому Смолухов-ский предложил метод последовательных итераций, в котором краевую задачу можно бьшо решить в любом приближении, рассматривая каждый раз граничные условия только на одной из частиц. Этот метод получил название метода отражений и позволил решить целый ряд задач, связанных с гидродинамическим взаимодействием частиц друг с другом и со стенками канала [22]. Метод основан на линейности уравнений Стокса, описывающих установившееся течение вязкой жидкости, когда значение критерия Рейнольдса, рассчитанное по диаметру частицы, мало по сравнению с единицей. Решение задачи обтекания частицы в облаке, состоящем из N частиц, ищется в виде суммы основного возмущения, вносимогг) в поток произвольно выбранной (пробной) частицей, и последовательных, ,отражений этого возмущения от имеющихся в наличии поверхностей  [c.64]

    Режимы движения фаз в колонных аппаратах чрезвычайно многообразны. Знание закономерностей поведения фаз в каждом режиме и пределов изменения гидродинамических параметров, в которых существует тот или иной режим, соверщенно необходимо при правильном определении условий проведб йя химических и тепло-массообменных процессов. Многообразие режимов движения фаз в аппаратах колонного типа обусловлено многими факторами в частности, многообразием участвующих в движении сред (твердые, жидкие и газообразные), многообразием величин и направлений скоростей фаз, различными условиями ввода и вывода фаз, возможностью возникновения различного рода неустойчивостей в двухфазном потоке, возможностью протекания процессов дробления и коагуляции частиц, а также влиянием поверхностно-активных веществ и различных примесей на поведение капель и пузырей. Однако при всем многообразии различного вида течений, встречающихся в колонных аппаратах, можно вьщелить определенный класс дисперсных потоков, которые имеют ограниченное число установившихся режимов, а поведение фаз в этих режимах определяется общими для всех систем закономерностями. Такие потоки можно назвать идеальными. Они существуют при скоростях движения фаз, сравнимых со скоростью их относительного движения. При этом частицы распределены достаточно равномерно по сечению аппарата если и существуют градиенты концентрации дисперсной фазы, то они имеют конечную величину. Это означает, что концентрация частиц в среднем меняется от точки к точке непрерывным образом. Форма частиц близка к сферической, а их размер не слишком отличается от среднего размера частиц в потоке. [c.86]

    Аналогичные данные были получены также Форукави и Кнуд-сеном [40], которые показали, что гидродинамические характеристики потока сохраняются в стесненном потоке вплоть до е=0,5. По-видимому, влияние турбулентной диффузии сказывается лишь при более высоких е. [c.249]

    Говоря о скорости потока в зернистом слое , часто имеют в виду совершенно различные величины эта неопределенность связана с тем, что имеется несколько уровней и способов усреднения скорости потока. Самое детализированное описание гидродинамики потока дает задание истинных локальных скоростей в каждой точке свободного объема зернистого слоя. Истинная локальная скорость потока обращается в нуль у поверхности твердых частиц. При скоростях потока, обычных для промышленных каталитических процессов, близ твердой поверхности наблюдается резкий перепад скорости, сосредоточенный в тонком гидродинамическом пограничном слое, толщина которого мала по сравнению с характерным размером твердых частиц или промежутков между ними. Поле истинных локальных скоростей близ твердой поверхности определяет скорость иассо-и теплообмена между потоком и поверхностью твердых частиц (см. главу 1П). Влияние распределения истинных локальных скоростей потока близ твердой поверхности на процессы переноса в слое в целом сказывается лишь в том, что участки близ твердой поверхности, где скорость потока близка к нулю, могут играть роль застойных зон , в которых происходит задержка и накопление вещества, распространяющегося по слою с движущимся потоком. Особенно сильные застойные эффекты должны наблюдаться в областях близ точек соприкосновения твердых частиц (рис. VI.4). Эти области эквивалентны узким и глубоким каналам турбулентные пульсации в них не проникают, истинная локальная скорость потока близка к нулю, и перенос вещества осуществляется только с помощью медленного процесса молекулярной диффузии. [c.215]


Смотреть страницы где упоминается термин Гидродинамического потока влияние: [c.63]    [c.567]    [c.398]    [c.66]    [c.50]    [c.88]    [c.90]    [c.243]    [c.240]    [c.251]    [c.220]    [c.19]   
Идеи скейлинга в физике полимеров (1982) -- [ c.0 ]

Идеи скейлинга в физике полимеров (1982) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте