Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Связующие для синтактных пенопластов

    В СССР синтактные пенопласты на основе олигоэфиракрилатов выпускают под марками СПС (со стеклянными микросферами) и СПМ (с фенольными микросферами) [1, 2, 131]. Технология изготовления СП прессовочного типа на основе олигоэфиракрилатов аналогична технологии изготовления СП на основе эпоксидных олигомеров. Недавно были разработаны рецептуры и технология получения литьевых композиций, отверждаемых при комнатной температуре [120, 154—156, 161, 174, 175]. Однако большая усадка при отверждении и высокая экзотермичность процесса отверждения [176, 177], иногда приводящая к растрескиванию и даже к обуглероживанию изделий, ограничивают применение этих материалов, несмотря на их более низкую стоимость по сравнению со стоимостью СП на эпоксидных связующих [57, 176 [c.176]


    Синтактные пенопласты на основе полиимидов и стеклянных микросфер выпускаются в США в промышленном масштабе под маркой НТ-60 [73, 185]. В качестве связующего используют аро- [c.177]

Таблица 25. Эффективность различных методов введения аппретирующих добавок в синтактные пенопласты на основе эпоксидного связующего и стеклянных микросфер Таблица 25. <a href="/info/1721799">Эффективность различных методов</a> введения аппретирующих добавок в <a href="/info/792734">синтактные пенопласты</a> на <a href="/info/1819763">основе эпоксидного связующего</a> и стеклянных микросфер
    Хорошие результаты дает механический способ снижения водопоглощения синтактных пенопластов, т. е. нанесение защитных покрытий на внешнюю поверхность изделия. Например, водо-поглошение материалов на основе эпоксидных связующих, покрытых тонким слоем эпоксидной смолы, снижается более чем в 10 раз, даже в условиях высоких гидростатических давлений [11 ]. [c.190]

    Термический коэффициент расширения синтактных пенопластов на основе углеродных микросфер и эпоксидного связующего уменьшается с увеличением доли наполнителя и составляет для чистого связующего и материалов, содержащих 12, 25 и 50% (об.) наполнителя соответственно 55 10 , 45 10 , 37 10 и 13 10" 1/°С. Существенно, что эти значения не меняются при повышении температуры образцов до 370 °С [79, 253], что особенно важно при использовании данных материалов в качестве теплоизоляции в условиях резко изменяющихся тепловых нагрузок. При замене эпоксидного связующего на фенольное (новолачного типа) термический коэффициент расширения становится еще ниже и составляет (при р = 200—300 кг/м ) 7-10 1/°С [77]. [c.197]

    Введением в композицию полых наполнителей — микросфер получают синтактные пенопласты. Технология их производства основана на смешении микросфер со связующим, заливке полученной композиции в формы с последующей термообработкой, при которой связующее переходит в пространственно-сшитый (сетчатый) полимер. Микросферы представляют собой шарики диаметром 1—500 мкм из стекла или полимерных материалов (полистирол, фенольные смолы и др.) Из связующих чаще всего применяют эпоксидные, кремнийорганические, фенолоформальдегидные смолы. [c.379]

    По этой же причине огнестойкость синтактных пеноматериалов всегда выше огнестойкости соответствующих химических пенопластов на основе тех же связующих. Способы повышения огнестойкости синтактных материалов, основанные на модификации и введении огнезащитных добавок в полимерное связующее, ничем не отличаются от обычных методов снижения горючести полимерных материалов. Важно только, чтобы применяемый способ не уменьшал прочности адгезионной связи между связующим и наполнителем. В СССР, в частности, получены синтактные пластики на основе специальных полиэфирных связующих, время горения и потери массы которых уменьшены соответственно в 4— 60 и 24—180 раз по сравнению с немодифицированными материалами [222]. [c.197]


    Проблема повышения физико-механических показателей (и прочностных, в частности) и увеличения сроков службы газонаполненных пластмасс неразрывно связана не только с изысканием новой технологии и новых способов модификации существующих пенопластов, но и с поисками новых типов олигомеров и полимеров, пеноматериалы на основе которых еще полнее удовлетворяли бы требованиям сегодняшнего и завтрашнего дня. Именно поэтому нам представлялось принципиально важным рассмотреть основные тенденции данной области полимерной науки, направленные на расширение ассортимента и повышение физико-механических показателей упрочненных пенопластов. С этой целью в каждой из двух частей монографии, посвященных соответственно интегральным и синтактным пеноматериалам, анализируется не только сегодняшнее состояние науки и технологии в этих областях, но и рассматриваются газонаполненные материалы завтрашнего дня, в большинстве случаях не вышедшие даже за рамки лабораторных испытаний. В числе перспективных пеноматериалов рассмотрены как принципиально новые типы газонаполненных пластмасс, которые правомерно отнести уже к третьему поколению этих материалов (наполненные, односторонние и обратные интегральные пенопласты, вспененные и наполненные синтактные пластики, интегрально-синтактные пенопласты и т. д.), так и традиционные пенопласты, но на основе некрупнотоннажных полимеров и олигомеров. [c.7]

    Синтактные пенопласты, или сферопласты (СП), представляют собой особый тип газонаполненных полимерных материалов, состоящих из полимерной матрицы (связующего) и распределенных в ней полых сферических частиц (наполнителя). В качестве связующего применяются реакционноспособные олигомеры и полимеры, а в качестве наполнителей — полые микросферы (микробаллоны) из стекла, полимеров, олигомеров, углерода, металлов и керамики [1, 2]. [c.158]

    Синтактные материалы изготовляются как на основе новолачных, так и резольных олигомеров холодного отверждения [33, 69, 121, 122, 143, 159, 178—181]. В последнем случае технология их изготовления ничем не отличается от технологии синтактных пенопластов на эпоксидных связующих. В качестве наполнителей используют стеклянные, фенольные, углеродные, полистирольные [116] и полиакрилонитрилвинилиденхлоридные [115] микросферы. [c.177]

    Однако более важным, чем механическое обжатие , фактором является образование прочных адгезионных связей между полимером и наполнителем. Во многих работах было показано, что наличие аппрета на поверхности стекла повышает прочность этих адгезионных связей [236—238]. Действительно, аппретирование материалов типа ЭДС позволяет значительно снизить их водопоглощение [1]. Ниже показано, как влияет аппретирование (ЭДС-А) на водопоглощение отечественных синтактных пенопластов (размер образцов 20x20x20 мм)  [c.189]

    Вторая стадия водопоглощения позволяет проследить за действием аппретируюшей добавки ( у-аминопропилтриэтоксисилана— АГМ-9) на водопоглощение синтактных пенопластов данного типа. Предварительная обработка стеклянных микросфер аппретом приводит к исчезновению второй стадии водопоглощения — кинетическая кривая аналогична таковой для ненаполненного связующего (см. рис. 78, б). Абсолютное уменьшение количества поглощенной воды и изменение самого характера водопоглощения свидетельствуют об образовании устойчивых к действию воды химических связей между связующим и наполнителем [166]. [c.193]

    Устойчивость синтактных пенопластов к тепловым воздействиям определяется, в первую очередь, типом связующего [187, 224]. Материалы на основе эпоксидных олигомеров обладают большей теплостойкостью по сравнению с материалами на основе отвержденных олигоэфирмалеинатстирольных связующих первые можно эксплуатировать при температурах до 200 °С, вторые — не выше 100 °С. Материалы на основе модифицированных эпоксидных олигомеров обладают сравнительно невысокой теплостойкостью. Значительно выше теплостойкость эпоксикаучуковых [52 ] и эпоксиноволачных связующих (теплостойкость по Мартенсу выше 170 °С) [131 ]. Материалы типа ЭМС сохраняют до 50% своей исходной прочности при сжатии при повышении температуры от 20 до 100 °С, а их прочность при изгибе уменьшается от 65—70 до 30—35 МПа [171 ]. Ускоренными испытаниями установлено, что пеноматериалы со стеклянными (ЭДС) и с полимерными (ЭДМ) микросферами отличаются высокой стойкостью к длительному тепловому старению — они выдерживают до 10 ООО ч при температурах 75—150 °С и длительное воздействие отрицательных температур [239]. [c.195]

    Следует учесть, однако, что наряду с общими чертами макроструктуры обычных пенопластов и синтактных материалов между ними существует и принципиальное различие в последних существует граница раздела между связующим и наполнителем, которая отсутствует во вспененных пластиках, где имеется непосредственный контакт полимера-основы с газом. Таким образом, совпадение теоретических и экспериментальных данных свидетельствует о достаточно прочной адгезионной связи на границе связующее—наполнитель и незначительных внутренних напряжениях в данном материале. С другой стороны, характер термограммы отверждения (рис. 88, а) подтверждает существование сильного химического взаимодействия между связующим и наполнителем. Кроме того, помимо образования адгезионных связей структурообразование полимера в присутствии наполнителя сопровождается образованием так называемого межфазного слоя полимера, свойства которого отличаются от свойств полимера-основы [241 ]. Подтверждением этого является изменение температуры стеклования эпоксидного связующего в зависимости от степени наполнения (рис. 88, б). Подчеркнем, что согласно данным Дементьева и Тараканова [262], с увеличением степени наполнения температура стеклования существенно снижается, что противоречит большинству данных о повышении или неизменности Г(. с увеличением содержания наполнителя [236, 237]. Снижение Тс означает, что введение наполнителя изменяет структуру полимера-основы, в частности плотность трехмерной полимерной сетки, что, впрочем, незначительно сказывается на прочностных характеристиках СП при комнатной температуре. [c.203]


    Традиционный путь снижения полимероемкости синтетических материалов за счет введения минеральных наполнителей имеет для пенополимеров ограниченное применение, поскольку значительно повышает их объелшый вес и усложняет технологию их изготовления. В связи с этим дальнейшее развитие приобретут микрокапсульные методы получения физических пен — синтактных пеноматериалов. Снижение объемного веса последних до значений 50—100 кг м возможно как за счет использования более легких (чем стеклянных) полимерных микросфер, так и и путем создания вспененных синтактных материалов, т. е. за счет создания ячеистой, а не монолитной структуры связующего. Другой путь создания более легких наполненных пен — применение в качестве наполнителей порошков из пеноматериалов, для получения которых можно использовать, например, отходы вторичной переработки пенопластов, а в более отдаленной перспективе — пеноволокна. [c.463]


Смотреть страницы где упоминается термин Связующие для синтактных пенопластов: [c.170]    [c.195]    [c.198]   
Упрочненные газонаполненные пластмассы (1980) -- [ c.171 , c.177 , c.178 , c.180 , c.187 ]




ПОИСК





Смотрите так же термины и статьи:

Пенопласты

Синтактные пенопласты



© 2025 chem21.info Реклама на сайте