Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Микросферы полимерные

    Ввиду ограниченного объема книги мы не останавливаемся на технологии изготовления микросфер и отсылаем читателя к соответствующим обзорам и статьям [1, 2, 11—17]. Здесь же мы рассмотрим только физикохимию образования и свойства микросфер в той мере, в какой это необходимо для понимания общих принципов получения и рационального применения СП. Заметим попутно, что выяснение механизмов образования полых полимерных микросфер имеет не только частный интерес, связанный с технологией изготовления СП, но и гораздо более общий — процессы газонаполнения и вспенивания единичных объемов полимерных композиций, приводящие к получению полых микросфер, следует рассматривать как простую и в то же время достаточно точную физико-химическую и структурную модель образования отдельных ячеек (но не ГСЭ) при газонаполнении и вспенивании обычных пенопластов. [c.160]


    Новым типом полых наполнителей для СП являются углеродные микросферы, отличающиеся высокой прочностью, теплостойкостью и хорошей адгезией к полимерным связующим [67—72]. [c.165]

    Микросферы, используемые в качестве наполнителей СП, могут быть стеклянными, полимерными, углеродными, керамическими, металлическими. Основные требования, предъявляемые к полым микросферам, используемых в качестве наполнителей, состоят в следующем сыпучесть, прочность, бездефектность, влаго- и химическая стойкость, гидролитическая прочность, возможность изменения гранулометрического состава и коэффициента заполнения объема в широких пределах. [c.159]

    С другой стороны, СП можно рассматривать и как особый тип наполненных монолитных пластиков, в которых наполнитель имеет намного меньшую плотность, чем связующее. Отнесение СП к наполненным пластикам правомерно и потому, что технология изготовления этих материалов исключает химические процессы вспенивания полимерной матрицы и состоит именно в механическом наполнении последней полыми микросферами. По этой причине СП часто называют физическими пенами [1]. [c.158]

    В процессе смешения при данной температуре термообработки связующее должно иметь жизнеспособность, достаточную для равномерного совмещения компонентов и формования конечного материала. Телегиной и др. [139] было показано, что энергия активации процесса вязкого течения полиэфирной смолы, наполненной фенольными и стеклянными микросферами, составляет 46,9 кДж/моль, а эпоксидной смолы с теми же микросферами — 78,3 кДж/моль. В этой работе показано также, что введение микросфер в полимерные композиции не изменяет температурного коэффициента вязкости, хотя, конечно, увеличивает ее абсолютное значение. На практике это означает, что вязкость наполненной композиции можно регулировать, зная температурную зависимость вязкости ненаполненного связующего. [c.168]

    Для изготовления СП чаще применяют микросферы полимерные, неорганические, углеродные размером более 1 мм с насыпной плотностью 220—500 кг/м . Микросферы можно изготовить и из гранул полистирола. [c.99]

    Формирование ячеистой структуры СП осуществляется микро-капсульным методом, т. е. введением газосодержащих микрокапсул (микросфер) в полимерное связующее [3,4]. Отнесение СП к пенопластам объясняется тем, что их физическая структура формально подобна структуре обычных газонаполненных пластмасс, изготавливаемых методом вспенивания, и оба типа материалов представляют собой гетерофазные системы типа твердое тело—газ . В общем случае, однако, СП в отличие от обычных пенопластов являются не двойными, а тройными системами, поскольку материалы матрицы и микросфер, как правило, различны по своему химическому строению. Подчеркнем при этом, что рассмотрение СП как трехфазных систем оказывается недостаточным для расчета их прочностных и упругих свойств — в этих случаях СП следует рассматривать как многофазные (я-фазные) системы, поскольку кажущаяся плотность микросфер, а значит и всего СП-изделия, может заметно различаться в пределах объема данного материала. [c.158]


    Стеклянные, углеродные, керамические, кварцевые и полимерные микросферы используют в качестве наполнителей и для неорганических материалов — цемента, гипса, извести и металлов [10—14]. [c.180]

    Интересно отметить, что раньше микросферы использовались не в качестве наполнителей полимерных материалов, а как средства для создания плавающего поверхностного слоя, эффективно [c.159]

    Высокая прочность при сжатии и относительно низкая плотность стекла, с одной стороны, и значительная разница в упругих свойствах стекла и полимеров — с другой, обусловливают широкое применение стеклянных микросфер в качестве наполнителей СП. Промышленное производство стеклянных микросфер освоено во многих странах [1—4, 11—13, 18—24], а их стоимость значительно ниже стоимости полимерных. [c.160]

    Для достижения плотности СП, равной или близкой к Рт, технологи рекомендуют несколько приемов (вибрация формы, применение высоких давлений формования и т. д.), с помощью которых достигается плотнейшая упаковка микросфер и, следовательно, оптимальные прочностные свойства. Следует помнить, однако, что идеальная плотнейшая упаковка сфер на практике никогда не достигается, и реальная упаковка всегда является в большей или меньшей степени неупорядоченной [5]. Стремление микросфер под действием внешних сил (давления) упаковаться более плотно приводит к появлению в структуре СП микрообъемов, в которых сферы имеют непосредственный контакт друг с другом, тогда как в других микрообъемах того же СП сосредоточиваются микросферы, контактирующие друг с другом через прослойку полимерного связующего. Поскольку прочность микрообъемов первого типа заметно ниже прочности вторых, то разрушение СП начинается именно в этих дефектных участках. Практический вывод из этих рассуждений очевиден для создания высокопрочных СП предпочтительнее более рыхлая упаковка микросфер, в которой все без исключения частицы наполнителя связаны друг с другом полимерной матрицей. [c.172]

    Для изготовления синтактных пенопластов на основе кремнийорганических полимеров используются стеклянные, керамические или полимерные микросферы и силиконовые смолы холодного отверждения [40,41, 182]. Основное назначение этих материалов— теплоизоляционные и абляционные покрытия [183]. В последнем случае исходную двухкомпонентную композицию наносят на наружную поверхность ракет методом напыления для улучшения адгезии применяют силиконовые клеи холодного отверждения [184]. Сравнительно недавно были предложены синтактные материалы на основе углеродных микросфер и силиконовых каучуков [1, 2]. [c.177]

    Как следует из данных табл. 22, синтактные материалы по прочностным свойствам близки к монолитным наполненным полимерным системам — стеклопластикам и компаундам, однако при этом их кажущаяся плотность в 2—3 раза ниже. Таким образом, пеноматериалы на основе микросфер имеют, по-видимому, самую высокую удельную прочность среди всех известных полимерных материалов. [c.182]

    Как уже говорилось, СП в общем случае представляют собой трехкомпонентные системы. Так, синтактный материал, в который введено 60% (об.) стеклянных микросфер со средней плотностью 300 кг/м , состоит из 40% (об.) полимерной фазы, 53% воздуха и 7% стекла [147]. Уменьшение содержания полимерной фазы на 60% не приводит к эквивалентному снижению прочности синтактного материала, как это наблюдается в случае монолитного полимера, — прочность снижается только на 55% благодаря упрочняющему влиянию микросфер [226]. Более того, чем ниже прочность и модуль исходного связующего, тем сильнее этот упрочняющий эффект. Так, в работе [226], в которой исследованы два типа связующих — эпоксидный олигомер и парафин, резко различающиеся по показателям прочностных и упругих свойств, показано, что введение одинакового количества стеклянных микросфер приводит в первом случае к снижению, а во втором — к увеличению абсолютных значений этих показателей по сравнению с монолитными материалами. Разумеется, удельная прочность этих синтактных материалов выше прочности монолитных пластиков на тех же связующих, но возрастание удельной прочности (в процентном отношении) гораздо значительнее при использовании парафина. Причина этого явления не выяснена, однако очевидно, что подобные упрочняющие эффекты разыгрываются в слоях связующего, близко примыкающих к оболочке наполнителя и связаны, скорее всего, с изменениями плотности и регулярности надмолекулярной структуры полимера. [c.186]

    Интересно, что при повышении температуры прочность СП на основе ФФО новолачного типа снижается в меньшей степени, чем для новолачных пенопластов без наполнителя (рис. 82) [77]. Это явление связано, несомненно, с протеканием процессов термоокислительной деструкции во всем объеме полимерной матрицы из-за наличия кислорода воздуха в толще материала, не содержащего наполнитель. Напротив, интенсивность термоокислительных процессов в СП значительно ниже, поскольку непосредственный контакт между воздухом и полимерной матрицей затруднен благодаря защитному барьеру — оболочке микросферы. [c.197]


    Еще один подход к описанию морфологии СП был продемонстрирован Дементьевым и Таракановым [262, 263], которые для расчета прочностных свойств СП на основе эпоксидного олигомера и фенольных микросфер заимствовали свою же модель морфологии вспененных полимерных материалов [264], но с двумя ограни- [c.201]

    На основе полимерных композиций, содержащих полые микросферы, заполненные красителями, изготавливается синтактная копировальная бумага [113, 119]. [c.208]

    Порошковые наполнители полимеров используют в промышленных масштабах главным образом для снижения стоимости и улучшения технологических свойств материалов. За исключением отдельных случаев такие наполнители практически не влияют на механические свойства композиций. Применяемые в промышленности наполнители состоят из частиц различной формы с большим разбросом по размерам — от искусственных стеклянных микросфер до окаменелых моллюсков (мела). Прочность и вязкость разрушения полимерных композиционных материалов с порошковыми наполнителями зависят от формы и размеров частиц наполнителя, их содержания, прочности сцепления с полимерной матрицей, вязкости разрушения матрицы и (в отдельных случаях) частиц наполнителя. При анализе этих свойств необходимо разделить полимерные композиционные материалы с дисперсными наполнителями на хрупкие (на основе стеклообразных полимеров типа отвержденных эпоксидных и полиэфирных смол) и нехрупкие (на основе частично кристаллических полимеров с высо- [c.69]

    Сферопластами (СП) называют газонаполненные полимерные материалы, состоящие из полимерного связующего и распределенных в нем полых сферических частиц наполнителя из стекла, металла, полимера, керамики [3]. В отличие от пенопластов они являются не двойными (газ-полимерными), а тройными системами, к которым добавлена оболочка микросфер. [c.98]

    TOB, каннабиноидов, гидазепама) на основе использования полимерных микросфер и внедрение полученных тест-систем в практику. [c.200]

    Дорохова Е.А. Полимерные микросферы для реакции латексной агглютинации , дисс. к.х.н., МИТХТ, Москва, 1991г. [c.205]

    МЕТАЛЛОПОЛИМЕРЫ, металлонаполненные полимеры или пористые металлы, пропитанные полимерными ком-позицюгми. Наполнителями служат порошки, волокна и ленты, получаемые практически из любых металлов или сплавов (чаще всего Ре, Со, №, Лg, 5п, А1, Со, Ве, РЬ, 2п, 2г, Сг, Т1, Та), коррозионностойкие аморфные металлич. сплавы ( металлич. стекла ), металлизир. порошки и волокна неорг. или орг. природы. Металлич. порошки (микросферы, нитевидные кристаллы, чешуйки и частицы неправильной формы) имеют размер частиц 10-10 нм, размер волокон в поперечном направлении составляет 10 — 2 10 нм, ширина и толщина лент-соотв. 3-5 мм и (1-4)-10 нм. Металлами наполняют полиамиды, политетрафторэтилен, ПВХ, полиэтилен, эпоксидные, феноло-формальд. и полиэфирные смолы, кремшшорг. полимеры и полиимиды. [c.48]

    Благодаря прекрасной биосовместимости хорошо сконструированных синтетических биомембран липосомы и везикулы из ПАВ были широко исследованы в качестве капсулирующих веществ для лекарств [21]. В искусственных клетках нашли применение как синтетические биомембраны, так и синтетические полимерные мембраны [22]. Искусственные клетки представляют собой капсулированные системы, которые могут быть введены в организм для эффективного воспроизведения естественных функций. Внутри искусственных клеток содержались ферментные системы, клеточные экстракты, биологические клетки, адсорбенты и др. Большое внимание уделяли созданию заменителей красных кровяных клеток (ККК). Было обнаружено, что микросферы с капсулированным кремнием быстро выводятся из системы кровообращения [23]. [c.335]

    Вполне понятно, что для создания лекарственных форм нового поколения необходимы и новые вспомогательные вещества, которые обеспечили бы все те эффекты, о которых шла речь выше. Это различные эфиры целлюлозы, позволяющие создавать многослойные лекарственные формы с разлитой способностью полимерных слоев к деградации смеси пропилцеллюлозы и этилцеллюлозы в разных соотношениях для микрокапсул, поли-Ь-лактиды с различной молекулярной массой для получения оральных микропеллет, сополимеры молочной и гликолевой кислот для получения биодеградируемых пористых микросфер для парентерального введения, водорастворимые полимерные носители на основе Ы-(2-гидроксипропил) метакриламида для избирательной доставки лекарственньтх средств [21] и многие другие. [c.296]

    Однозначность полученных результатов нри измерении изотерм адсорбции паров бензола и определении распределения суммарных объемов пор по гидравлическим радиусам для образцов до и после порометрических измерений свидетельствует о том, что скелет исследованных углей в процессе этих измерений не разрушается вплоть до давлений 400 МПа. Наши выводы согласуются с данными других исследователей [9—11]. Однако полученные экспериментальные результаты нельзя распространять на все пористые тела с жестким скелетом. Встречаются важные для практики пористые материалы, скелеты которых разрушаются при ртутно-поромет-рических исследованиях. В наших опытах при изучении пористой структуры органических полимерных материалов, наполненных стеклянными полыми микросферами, полости которых недоступны молекулам бензола, при давлении 29,4 МПа происходило разрушение микросфер. [c.195]

    Для анализа низших спиртов с одной гидроксильной группой лучше использовать газовую хроматографию, в то время как жидкостная хроматография успешнее используется для разделения и определения высших свободных спиртов и их производных. Для разделения спиртов и гликолей методом жидкостной хроматографии используются простые сорбенты, а также ионообменные смолы и гели. За последнее время были разработаны новые сорбенты и носители, например пористая двуокись кремния, в виде микросфер, которые дают возможность достигнуть существенного увеличения скорости разделения [1]. Когда анализируют диолы, главным образом полимерные соединения типа по-лиэтиленгликоля, наиболее важной задачей является определение молекулярной массы. Для этой цели наиболее подходящей является гель-проникающая хроматография, но может также применяться и силикагель. [c.22]

    Синтактные пенопласты, или сферопласты (СП), представляют собой особый тип газонаполненных полимерных материалов, состоящих из полимерной матрицы (связующего) и распределенных в ней полых сферических частиц (наполнителя). В качестве связующего применяются реакционноспособные олигомеры и полимеры, а в качестве наполнителей — полые микросферы (микробаллоны) из стекла, полимеров, олигомеров, углерода, металлов и керамики [1, 2]. [c.158]

    Наряду с микросферами для изготовления СП применяются полимерные [120, 121], неорганические [122] и углеродные [721 макросферы размером более 1 мм с насыпной плотностью 220— 500 кг/м . Смеси микросфер и макросфер позволяют снизить кажущуюся плотность конечных изделий, хотя в общем случае удельная прочность таких материалов ниже, чем прочность изделий, изготовляемых с применением микросфер [2, 27, 123]. [c.166]

    Наиболее важным при изготовлении СП является достижение равномерного распределения микросфер в полимерной матрице. Для лучшего распределения заливочных текучих композиций рекомендуется, особенно при изготовлении крупногабаритных изделий, проводить вибрацию формы [2]. Прессовочные композиции труднее заполняют формы, поэтому при загрузке композиций применяют тромбование, а для изделий несложной формы — прессование при невысоких давлениях (0,5—2,0 МПа). Формы для изделий больших объемов и сложной конфигурации заполняют послойно [1,2], для чего используют разъемные конструкции из металла, дерева или стеклопластика с гладкой внутренней поверхностью, обезжиренной или покрытой разделительным слоем. [c.169]

    Устойчивость синтактных пенопластов к тепловым воздействиям определяется, в первую очередь, типом связующего [187, 224]. Материалы на основе эпоксидных олигомеров обладают большей теплостойкостью по сравнению с материалами на основе отвержденных олигоэфирмалеинатстирольных связующих первые можно эксплуатировать при температурах до 200 °С, вторые — не выше 100 °С. Материалы на основе модифицированных эпоксидных олигомеров обладают сравнительно невысокой теплостойкостью. Значительно выше теплостойкость эпоксикаучуковых [52 ] и эпоксиноволачных связующих (теплостойкость по Мартенсу выше 170 °С) [131 ]. Материалы типа ЭМС сохраняют до 50% своей исходной прочности при сжатии при повышении температуры от 20 до 100 °С, а их прочность при изгибе уменьшается от 65—70 до 30—35 МПа [171 ]. Ускоренными испытаниями установлено, что пеноматериалы со стеклянными (ЭДС) и с полимерными (ЭДМ) микросферами отличаются высокой стойкостью к длительному тепловому старению — они выдерживают до 10 ООО ч при температурах 75—150 °С и длительное воздействие отрицательных температур [239]. [c.195]

    Для создания надежного расчетного аппарата необходимы достаточно простые, но точные модельные представления о структуре СП. Отметим, что попытки построения морфологических моделей СП на основании известных моделей монолитных пластиков, наполненных сплошными частицами сферической формы, оказались неудачными [149—153]. Недостаточно точны и модели, в основу которых положены представления о плотнейших упаковках микросфер [29—34, 221, 260]. В частности, как показали Кржечковский, Лавренюк и Сазонов [261 ] отнесение СП к гомогенным однородным материалам возможно только при небольших Кзо (до 20%), когда отсутствует взаимное влияние полей напряжений, возникающих в полимерной матрице вокруг микросфер (см. с. 172). [c.201]

    Поскольку один наполнитель, как правило, не может удовлетворять всем предъявляемым требованиям, в ряде случаев применяют смесь наполнителей. Весьма эффективно использование смеси, состоящей из двух наполнителей, имеющих различную форму, например волокон и стеклянных микросфер. При правильном выборе размера частиц наполнителей более мелкие частицы располагаются внутри обогащенных связующим областей, образованных более крупными частицами, и вытесняют полимерное связующее. Это улучщает смачивание частиц связующим и повыщает текучесть композиции и механические свойства отвержденного материала 1[137]. [c.102]

    Если ретикулярные поропласты являются предельным случаем принципа построения газонаполненных пластмасс с сообщающимися ГСЭ, то так называемые синтактные пены являются по аналогии абсолютными пенопластами , поскольку все ГСЭ этих материалов изолированы друг от друга. Последние можно называть физическими пенами , так как ячеистая структура этих материалов образуется не за счет сложного комплекса коллоиднохимических явлений, сопровождающих процесс вспенивания, а путем наполнения монолитных композиций микросферами (микробаллонами), содержащими воздух или иной газ, посредством физического (механического) введения наполнителя, исключающего все физико-химические процессы взаимодействия газа и полимерной матрицы во время изготовления пеноматериала. [c.11]

    T. B. Красникова, E. Б. Нетриленкова. Пеноматериалы на основе полимерных связующих и микросфер. Изд. Ленинградского дома научно-технической пропаганды, 1971, 46 с. [c.16]

    Традиционный путь снижения полимероемкости синтетических материалов за счет введения минеральных наполнителей имеет для пенополимеров ограниченное применение, поскольку значительно повышает их объелшый вес и усложняет технологию их изготовления. В связи с этим дальнейшее развитие приобретут микрокапсульные методы получения физических пен — синтактных пеноматериалов. Снижение объемного веса последних до значений 50—100 кг м возможно как за счет использования более легких (чем стеклянных) полимерных микросфер, так и и путем создания вспененных синтактных материалов, т. е. за счет создания ячеистой, а не монолитной структуры связующего. Другой путь создания более легких наполненных пен — применение в качестве наполнителей порошков из пеноматериалов, для получения которых можно использовать, например, отходы вторичной переработки пенопластов, а в более отдаленной перспективе — пеноволокна. [c.463]

    Микросферы получают из эмульгированных растворов термопластов, насыщенных полиэфирных смол методом суспензионной полимеризации, а также из олиго-эфиракрилатов. Высокой прочностью, теплостойкостью и хорошей адгезией к полимерным связующим отличаются углеродные микросферы. Распылением низковязких растворов и расплавов получают микросферы на основе полиуретанов, полиамидов, ненасыщенных полиэфирных, эпоксидных и других олигомеров, а также полиэтиленов, полипропиленов, поливинилхлоридов, полп-стиролов и других материалов, органических и неорганических. [c.99]


Смотреть страницы где упоминается термин Микросферы полимерные: [c.188]    [c.178]    [c.169]    [c.451]    [c.73]    [c.325]    [c.251]    [c.251]    [c.119]    [c.170]    [c.204]    [c.209]    [c.421]   
Химия и технология газонаполненных высокополимеров (1980) -- [ c.463 ]




ПОИСК







© 2025 chem21.info Реклама на сайте