Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Число ячеек

Рис. 1Х.24. Зависимость числа ячеек, эквивалентных трубчатому реактору, от параметра М- Рис. 1Х.24. <a href="/info/39461">Зависимость числа</a> ячеек, <a href="/info/1113393">эквивалентных трубчатому</a> реактору, от параметра М-

    В частном случае, когда число ячеек Ш =г I, т.е. жидкая фааа на контактном устройстве идеально перемешана. [c.89]

    ОПРЕДЕЛЕНИЕ ЧИСЛА ЯЧЕЕК [c.82]

    Инженерные методы расчета числа ячеек N разработаны весьма недостаточно. Наибольшее распространение пока получил экспериментально-статистический метод. Его применение основано на формальной аналогии между числом Пекле Ре и числом ячеек-реакторов N. Как и для Ре величина N рассчитывается по вероятностным характеристикам дифференциальной кривой распределения, получаемой экспериментально. Методика построения этой кривой и ее обработка с целью отыскания вероятностных характеристик аналогична той, которая была изложена в гл. П1. [c.82]

    Введение этого условия позволяет однозначно определить долю обратного перемешивания в зависимости от числа ячеек, которыми формально может быть интерпретирован реактор промежуточного типа. Поэтому равенство (IV.28) не следует рассматривать как соотношение, с помощью которого при известном числе Ре можно определить физическое число ступеней и величину обратного перемешивания между ними в секционированных аппаратах. [c.89]

    Как следует из рис. 28, максимумы дифференциальных кривых ячеистой модели по величине моды (абсцисса максимума) и плотности вероятности моды (ордината максимума) значительно отличаются от кривых диффузионной модели. Эти отклонения тем больше, чем меньше доля обратного перемешивания и число ячеек. [c.90]

    На рис. 30 изображена величина процентного отклонения Да , А И з, ДФ в зависимости от числа ячеек и числа Пекле. Например, если известно Ре диффузионной модели, то, задаваясь числом ступеней N реактора, по графику (рис. ЭД) находим АФ и из равенства (IV. 35) определяем Ф. Подставляя значения Ф и А/ в (IV.28), находим величину доли обратного перемешивания К. Следует еще раз подчеркнуть, что найденные таким путем значения К ш N являются формальными и, как отмечалось выше, могут быть использованы только для адекватного перехода от диффу.зионной модели к ячеистой модели с обратным перемешиванием применительно к несекционированным реакторам (полым или с насадкой). [c.90]

    Значение х для реального числа ячеек не должно превышать 14, что отвечает предельному случаю у = 0. [c.94]

    О СВЯЗИ МЕЖДУ ЧИСЛОМ ЯЧЕЕК [c.99]

Рис. 35. Зависимость изменения Ре от числа ячеек по радиусу при отсутствии (а) и наличии (б) продольного переноса [129] — ПО данным дисперсии в(щ ства-индикатора О — по данным радиального переноса вещества. Рис. 35. <a href="/info/263079">Зависимость изменения</a> Ре от числа ячеек по радиусу при отсутствии (а) и наличии (б) <a href="/info/779641">продольного переноса</a> [129] — ПО <a href="/info/572690">данным дисперсии</a> в(щ ства-индикатора О — по данным радиального переноса вещества.

    Значения чисел Рвг.м и Ре,, найденные с учетом выражений (IV.55), (IV.60) и I = = /г из уравнения (IV.56) по данным переноса вещества по радиусу и дисперсии вещества-индикатора представлены на рис. 35, 36. при числе ячеек по радиусу величины [c.102]

    Обозначим через М число ячеек по диаметру реактора р и примем в первом приближении, что длина ячейки I равна приведенному диаметру зерна катализатора d . Тогда из (IV.60) находим [c.103]

    Равенство (IV.61) позволяет определить как число ячеек по диаметру реактора при известной величине его, так и вычислить диаметр реактора при заданном значении М. [c.103]

    Для определения числа ячеек по высоте насадки реактора выше принятой длиной I = dg в равенстве (IV.61) непосредственно воспользоваться нельзя, так как физически задача теряет смысл. Поэтому, исходя из одинакового характера кривой распределения ячеистой и диффузионной моделей, в ряде исследований были предприняты попытки об установлении зависимости между числом ячеек N по длине реактора и числом продольного переноса [c.103]

    Определение числа ячеек........ [c.176]

    О связи между числом ячеек п числом Пекло [c.176]

    Тип сечение Число ячеек Масса, кг [c.281]

    Заметим, что уравнение (П1.69) применимо для расчета 5(() и ри х<0,5 однако при этом пренебрежение членами 2 возможно лишь при t>2—3. Расчет показывает [105], что с увеличением числа ячеек полного перемешивания п возрастает время t, при котором справедливо уравнение (П1.69). [c.60]

    Очевидно, при достаточно большом числе ячеек п малой высоты Н зависимость (111.25) можно приближенно представить в виде [c.74]

    Таким образом, рециркуляционная модель при л б—8 фактически может применяться лишь как однопараметрическая. Это значит, что при ее использовании один из параметров должен быть известен заранее (например, число ячеек п), а второй определяется экспериментально. В дальнейшем это положение будет подтверждено и при анализе функций распределения времени пребывания (см. гл. IV). [c.75]

    Полученных уравнений вполне достаточно для экспериментального определения параметров, проверки надежности найденных результатов и установления формальной адекватности модели потоку в аппарате. При этом число ячеек рециркуляционной модели обычно принимают равным числу секций в колонне. Неизвестным является лишь один параметр — коэффициент рециркуляции, иногда называемый коэффициентом обратного перемешивания. Чаще всего этот коэффициент определяют по дисперсии экспериментальной С-кривой, регистрируемой на выходе потока из аппарата. [c.101]

    Из уравнения (У.7) следует, что для секционированной колонны эффект продольного перемешивания обусловлен наличием конечного числа ячеек полного перемешивания и турбулентным перемешиванием между соседними ячейками. Величина Епл представляет собой не истинный коэффициент продольной турбулентной диффузии, а фиктивный, отнесенный ко всему поперечному сечению колонны. Этот коэффициент связан с коэффициентом продольной турбулентной диффузии п.т в сечении отверстия секционирующего кольца диаметром Дз соотношением [c.152]

    Злая входные и выходные концентрации обеих фаз, число ячеек полного перемешивания и значение Р, можно по формуле ( 1.95) или ( 1.96) оценить интенсивность массообмена в аппарате. Располагая значением объемного коэффициента массопередачи, можно рассчитать высоту аппарата, необходимую для достижения заданной степени разделения при известной интенсивности продольного перемешивания  [c.222]

    По уравнениям (VI.129) — (VI.130) расчет ведется последовательно для к = 2, 3,. .. до тех пор, пока достигается Хй = л д в. Этим путем рассчитывают распределение переходящего компонента в фазах по высоте колонны, находят число ячеек п и высоту I. [c.236]

    Задаваясь последовательно к=2, 3, 4,. .., с помощью выражений (VI.131) и (VI.132) можно рассчитать концентрационные профили и, определив необходимое число ячеек п. Хк=п Хв), найти высоту колонны Ь = пН, обеспечивающую извлечение вещества из фазы X от Хп до дгв- При [c.237]

    При выводе уравнения ячеечной модели за основу принимают представление об идеальном перемешивании в пределах ячеек, располокенных последовательно, и отсутствии перемешивания между ячейками. Параметром, характеризующим модель, служит число ячеек т 16]  [c.39]

    Из равенств (1У.5)—(1У.13) при известных значеаиях вероятностных характеристик легко отыскивается число ячеек-реакторов N. Окончательное значение величины N определяется как среднее арифметическое  [c.83]

Рис. 36. Зависимость пзмеиенпя Ре от числа ячеек по радиусу приРе =2 (а) п при значениях Ре на рис. 35, б (б) [129] Рис. 36. Зависимость пзмеиенпя Ре от числа ячеек по радиусу <a href="/info/215835">приРе</a> =2 (а) п при значениях Ре на рис. 35, б (б) [129]
    Обп1,ее число ячеек памяти, используемых для хранения числовой информации решаемой задачи, таким образом, составляет [c.459]


    Ячеечная модель (рис. П-2) является наиболее простой моделью [4—11]. Согласно ячеечной модели, аппарат состоит из ряда последовательных ячеек полного перемешивания, через которые проходит (проходят) транзитный поток (потоки). Параметром ячеечной модели, количественно характеризующим продольное перемешивание, служит число ячеек полного перемешивания п. С увеличением п структура потока приближается к модели полного вытеснения, а с уменьшением п — к модели полного перемеши- [c.26]

    Рециркуляционная модель [28—44], иногда называемая ячеечной моделью с обратными потоками, предполагает, что аппарат состоит из ряда последовательных одинаковых ячеек полного перемешивания, через которые наряду с основными проходят рециркуляционные (обратные) потоки (рис. И-4). По этой модели параметрами степени неидеальности потока являются число ячеек полного перемешивания п и коэффициент межъячеечной рециркуляции f=W u, где — средняя линейная скорость обратных потоков (удельная рециркуляция). Заметим, что W = <л q (где ш — объемная скорость межъячеечных рециркуляционных потоков, мУч q — площадь поперечного сечения аппарата). [c.28]

    Точность зависимости (III.26) повышается с увеличением числа ячеек п, так как при этом становится корректнее принятая в работе [21] для диффузионной модели замена производных конечными разностями. Однако при п—уоо и / = onst правая часть [c.45]

    Заметим, что опытная кривая отклика может быть практически одинаково близка теоретическим функциям отклика как диффузионной, так и рециркуляционной модели. Однако для описания процесса в непроточной секционированной колонне при интенсивном перемешивании, когда секции близки к ячейкам полного перемешивания, предпочтительнее рециркуляционная модель, поскольку она лучше, чем диффузионная, отражает физическую картину перемешивания в таком аппарате. Для описания же продольного перемешивания в непроточной несекционнрованной колонне, а также в аппаратах, где невозможно по конструктивным признакам определить число ячеек полного перемешивания, целесообразнее использовать диффузионную модель. [c.80]

    Согласно уравнениям (IV.48) и (IV.49), значение = t L/Peэф возрастает с увеличением интенсивности перемешивания внутри ячеек (уменьшением Ре) и межъячеечных рециркуляционных потоков (ростом f или х), а также с уменьшением числа ячеек п. [c.96]

    Используя зависимость (VI. 128), расчет проводят графическим путем [230, 231],. На диаграмме у—х строят линию равновесия и балансовую линию. Между обеими линиями проводят отрезки параллельно оси х. Через точки отрезков, делящие их в отношении Н1кх, проводят рабочую линию. Затем графическим построением определяют число ячеек между балансовой и рабочей линиями и рассчитывают высоту колонны Ь = пН. [c.235]


Смотреть страницы где упоминается термин Число ячеек: [c.70]    [c.82]    [c.99]    [c.105]    [c.46]    [c.37]    [c.11]    [c.28]    [c.41]    [c.53]    [c.102]    [c.106]    [c.174]    [c.226]    [c.248]    [c.328]   
Химия и технология газонаполненных высокополимеров (1980) -- [ c.75 , c.77 , c.198 , c.211 , c.221 , c.234 , c.296 , c.376 , c.377 ]

Основы массопередачи Издание 3 (1979) -- [ c.370 , c.382 , c.382 ]

Реакционная аппаратура и машины заводов (1975) -- [ c.143 ]




ПОИСК





Смотрите так же термины и статьи:

Ячейка



© 2025 chem21.info Реклама на сайте