Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Органический анализ

    И. М. Кольтгоф, В. А. Стенгер. Объемный анализ. Госхимиздат, 1950, (т. I. 376 стр.) и 1952, (т. И, 444 стр.). В т. I рассматриваются теоретические основы объемного анализа. Изложена теория методов нейтрализации и соединения ионов, приведены кривые титрования для различных случаев метода нейтрализации. Отдельные главы содержат материал ио теории методов окисления-восстановления, теории индикаторов, по ошибкам титрования. Рассмотрены явления адсорбции и соосаждения, катализа и индукции, применение объемных методов в органическом анализе описаны теоретические положения, касающиеся применения физико-химических методов для определения точки эквивалентности. В т. 11 книги изложено практическое применение методов нейтрализации, осаждения и комплексообразования. В томе 111 (840 стр., 1961 г.) описано применение окислительно-восстановительных методов объемного анализа. [c.486]


    ОБЩИЕ ПРЕДСТАВЛЕНИЯ ОБ ЭЛЕМЕНТНОМ ОРГАНИЧЕСКОМ АНАЛИЗЕ [c.44]

    В органическом анализе микроаналитические методы имеют большие преимущества перед макроаналитическими. Они позволяют экономить реактивы, требуют минимального количества анализируемого вещества. Кроме того, наивного сокращают продолжительность выполнения анализа. Для количественного элементного анализа созданы автоматизированные установки-анализаторы, позволяющие быстро и с большой точностью определять из одной навески вещества несколько [c.48]

    Она оказалась исключительно удобной для элементарного органического анализа методом сожжения. Методика процесса окисления органических соединений окисью меди была разработана еще Ю. Либихом. Сначала сжигаемое вещество перемешивали с порошкообразной СиО, но впоследствии, когда было установлено ее каталитическое действие, смешение стали применять лишь для очень трудно окисляющихся веществ. Окись меди мало пригодна для сожжения многих соединений, содержащих азот, серу и галогены для окисления этих веществ было предложено применять платину. [c.176]

    ОРГАНИЧЕСКИЙ АНАЛИЗ МЕТОДАМИ ГИДРИРОВАНИЯ 349 [c.349]

    Органический анализ методами гидрирования [c.349]

    Количественный органический анализ [c.5]

    Будущему специалисту по технологии рекуперации вторичных материалов промышленности (спец. 0836) необходимо общее знакомство с техническим органическим анализом. Поэтому в практикуме рассмотрены методики технического анализа некоторых полимерных соединений и дру -гих продуктов. [c.4]

    Ре(П) как восстановитель, а Ре(1П) как окислитель оказываются пригодными прежде всего при анализе часто встречающихся проб, не содержащих железа. Так как величина потенциала системы Ре(1(1) — Fe(ll) относительно невелика, можно, правда, титровать только сильные окислители или сильные восстановители, используя соответственно Fe(ll) или Fe(IH). В качестве сильною восстановителя используют Ti(lll), реже Сг(Н). Хранить растворы этих реагентов и работать с ними следует в инертной атмосфере, исключающей контакт с воздухом. Это затрудняет работу с ними по этой причине их используют при выполнении серийных определений и значительно реже при выполнении отдельных определений. Система Ti(IV) — Ti(UI), потенциал которой сильно зависит от pH, приобрела особое значение в органическом анализе определение нитрогрупп, анализ красителей). Кроме того, существуют многие менее употребительные новые титриметрические методы. В качестве реагентов титранта были предложены [40]  [c.82]

    Журнал аналитической химии — издается с 1946 г. Академией Наук СССР раз в два месяца. Журнал публикует теоретические работы в области аналитической химии, исследования по разработке новых физико-химических и других методов неорганического и органического анализа, освещает работы по аналитической химии за руО ежом. [c.493]


    Сиггиа С., Ханна Дж. Г. Количественный органический анализ по функциональным группам. - М. Химия, 1983. [c.321]

    АНАЛИТИЧЕСКАЯ ХИМИЯ — один из основных разделов химической науки. изучающий методы определения состава веществ. Различают качественный и количественный анализы, а также, в зависимости от объекта исследования, неорганический и органический анализы. Различают также элементарный, функциональный, весовой, объемный, или титриметрический, спектральный, хроматографический, полярографический и другие анализы. [c.25]

    Для работы могут быть рекомендованы коллодиевые мембраны (приготовление см. стр. 55) или керамические диафрагмы (например, выточенные из слабо обожженных фарфоровых пластинок, применяемых в органическом анализе), вклеенные в [c.185]

    Прежде всего необходимо знать суммарную электродную реакцию, а именно число электронов, участвующих в процессе, и конечные продукты реакции. Для определения последних используют самые разнообразные методы классические методы неорганического и органического анализа, электроаналитические методы, хроматографию, спектральные методы и т. п. Далее можно записать последовательность стадий перехода от исходных веществ к продуктам реакции и сопоставить выводы, вытекающие при предположении о медленности той или иной стадии суммарного процесса, с экспериментальными данными. В последнее время для выбора оптимальной схемы электродного [c.348]

    Реакции обнаружения молекул. Методы обнаружения неорганических и органических веществ различаются, поскольку в первом случае почти всегда используют ионные реакции, во втором — в основном молекулярные. Реакции между ионами протекают в большинстве случаев быстро и однозначно, реакции между молекулами часто идут медленно, не полностью и сопровождаются побочными реакциями (ср. стр. 46). Это обстоятельство, а также очень большое число соединений, с которыми имеют дело в органической химии, нередко мало отличающихся по свойствам (гомологические ряды), делают обнаружение и исследование органических веществ несравненно более трудной аналитической задачей, чем неорганических соединений. Задача качественного органического анализа чаще всего заключается в установлении идентичности неизвестного вещества с уже известным соединением или в выяснении природы нового неизвестного соединения. Несмотря на то что в случае органических веществ иногда и имеют дело с ионами, последние, за малыми исключениями, обладают сложной структурой, и поэтому такие простые ионные реакции, как в неорганическом анализе, для них становятся едва ли возможными. [c.56]

    Оптические исследования позволяют выявлять структуру молекулы, рассчитывать длину связей, энергетические уровни, обнаруживать внутри- и межмолекулярные взаимодействия. Так называемые цветные реакции являются основой методов количественного и качественного неорганического анализа, а также большинства методов органического анализа. Если учесть, что оптические измерения сравнительно легки, их результаты доступны для количественных оценок и наглядны в интерпретации, то ясно, что значение оптических исследований для хи мии трудно переоценить. [c.130]

    Оксид меди находит широкое применение в силикатной промышленности для получения зеленых и синих эмалей, красных стекол. Кроме того, он употребляется для гальванических элементов как деполяризатор, при элементарном органическом анализе в качестве окислителя и др. [c.401]

    В органическом анализе применяют также ионообменную и распределительную хроматографию, газовую и газо-жид-костную хроматографию, гель-хроматографию [2] и др. [c.9]

    Разграничение методов хроматографического разделения смесей по признаку применения их в неорганическом либо в органическом анализе явилось бы условным. Например, газо-жидкостная хроматография недавно нашла применение в неорганическом анализе для разделения хе-латных соединений металлов [3] известны также работы по применению газовой хроматографии для определения четыреххлористого германия в смеси с другими хлоридами [4]. [c.9]

    Эти основоположники органического анализа в пооцессе своих исследований получили такие результаты, которые пошатнули веру в важность эмпирической формулы. Случилось это следующим образом. [c.75]

    В результате реакции было получено 5 г газа, конденсировавшегося при —78°, состоявшего из 70% бутанов и бутиленов, 25% пропана и пропилепа и 5% более высокомолекулярных углеводородов. Было получено также 75 л газа, ие сконденсировавшегося нри —78°, состоявшего из 92% этилена, 6,5% парафинов и 1,5% водорода. Полимеры выкипали в пределах 36—390° и выше и наноминали полимеры, полученные Ипатьевым [23]. Продукт термической полимеризации этилена содержал 8% парафинов, 68% олефинов и 24% циклопарафинов. Соверщенно отсутствовали ароматические углеводороды. В продукте реакции содержались очень большие количества высококиняш,их фракций, только 24% его выкипало до 225°. Отсутствие ароматических углеводородов подтверждают цифровые данные, полученные при органическом анализе, а также то, что после обработки фракций 96 %-ной серной кислотой был получен продукт, не реагирующий с нитрующей смесью. Для дальнейшего доказательства фракции 11, 16 и 19 были Прогидрированы при 220° в присутствии окиси никеля. Анализ гидрогенизатов дал следующие данные. [c.188]


    Книга посвящена краун-соединениям — новым необычайно перспективным веществам с уникальными свойствами, находящим все более широкое практическое применение (в аналитической химии, в органическом анализе, в биоорганической химии, в качестве катализаторов и др.). Описаны методы синтеза макроциклов, их применение в различных областях. Приведены справочные данные по стоуктуре образующихся комплексов. [c.488]

    Элементарный состав нефти определяется путем сожжения в трубке для органического анализа. При этом надо заметить, что нагревание последних остатков нефти сопровождается разложением их с образованием лешо летучих продуктов, иногда не успевающих сгореть поэтому рекомендуется вести сожжение очень медленно. [c.20]

    Все эти обстоятельства заставляют внимательно учитывать содержание серы в керосине нри его оценке. Для анализа предложено много способов, из которых главные относятся к сжиганию навеокд керосина в лампочках с улавливанием продуктов горения (чахггнч ным) или к калориметрическим способам. Кроме того имеются и классические способы определения серы путем элементарного органического анализа. Эти способы будут в дальнейшем рассмотрены прежде всего. [c.207]

    Торп Д., Уайтли М. Практическое руководство по органическому анализу. Пер, с англ./Под ред. А. П. Терентьева. М,, ОНТИ, 1937. 256 с. [c.143]

    Большие возможности в органическом анализе представляет сочетание полярографии с хроматографией — х р о м а т о п о л я-рография — где полярографические датчики анализируют последовательно выходящие из хроматографической колонки вещества. В приложении к бумажной и тонкослойной жидкостной хроматографии этим методом можно определять вещества с близкими значениями У /, избегать проявления хроматограмм, заменяя его полярографированием вдоль линии подъема раствора. [c.279]

    Дж. Нидерль, В. Нидерль. Микрометоды количественного органического анализа. Госхимиздат, 1949, (276 стр.). В книге описаиы основные микроаналитические методы количественного определения отдельных элементов и функциональных групп в органических веществах и методы определения молекулярного веса. Значительное внимание уделено описанию техники работы. [c.492]

    Предложенная М. С. Цветом адсорбционная хромата- графия не только не утратила своего значения, но получила дальнейшее развитие и находит обширное применение в органическом анализе молекулярнодисперсных веществ, находящихся в газообразном и растворенном состояниях. [c.9]


Библиография для Органический анализ: [c.40]   
Смотреть страницы где упоминается термин Органический анализ: [c.29]    [c.622]    [c.520]    [c.197]    [c.321]    [c.326]    [c.131]    [c.231]    [c.3]    [c.98]    [c.300]    [c.125]   
Смотреть главы в:

Приготовление синтетических химико-фармацевтических препаратов Изд.2 -> Органический анализ

Микро- и полумикрометоды органического функционального анализа -> Органический анализ


Приготовление синтетических химико-фармацевтических препаратов Изд.2 (1923) -- [ c.127 ]




ПОИСК







© 2025 chem21.info Реклама на сайте