Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Каталитическое действие

    Однако, если в качестве катализатора хлорирования хлористого пропионила применять вместо перекиси бензоила иод, то получают до 100% хлорангидрида а-хлорпропионовой кислоты. Механиамы каталитического действия перекисей и обычных переносчиков галоида должны быть различны. Это различие проявляется также и в ориентирующем действии отрицательного заместителя, уже присутствующего в молекуле [137]. [c.593]


    Каталитический крекинг-процесс отличается от термического тем, что пары углеводородов перерабатываемого сырья пропускают над катализатором, т. е. веществом, которое ускоряет и направляет ход реакций, при этом получаются продукты более качественные, чем при термическом крекинге. В настоящее время в качестве катализатора наиболее широко применяются алюмосиликаты, которые содержат около 70—80% 5102, 10—18% А Оз. Для повышения каталитического действия алюмосиликатов в них добавляют также окислы железа, никеля, меди и других металлов. [c.8]

    Окисление масел значительно ускоряется в присутствии металлов или других веществ, каталитически действующих на окисление. Одни металлы (медь, железо, свинец) ускоряют окисление другие (алюминий, олово) или же не оказывают никакого влияния, или даже тормозят окисление. [c.160]

    Из ЭТИХ трех форм окись меди (I), по литературным данным, является специфическим, селективно действующим катализатором для окисления пропилена в акролеин. Окись меди (II) оказывает каталитическое действие на реакцию полного окис.пения пропилена в СОа, металлическая медь неактивна. [c.98]

    Нитрофоска, как уже отмечалось, способна к термическому разложению и самораспространяющемуся разложению с выделением в газовую фазу окиси азота, хлора, фтора, каталитически действующих на дальнейший процесс термораспада. Поэтому важнейшим условием предупреждения термического распада нитрофоски,, как и аммиачной селитры, является исключение возможности ее перегрева, в том числе местных (локальных) перегревов и длительного (выше регламентированного) пребывания этого продукта в аппаратуре при сравнительно высокой температуре. Однако-эти основные закономерности в производственных условиях не всегда обеспечиваются, поэтому не исключаются и возможные очаги разложения продукта. [c.59]

    Теории гетерогенного катализа. В настоящее время еще нет единой и общепризнанной теории катализа. В разное время исследователями ряда стран предлагались взаимно дополняющие друг друга частные теории, базирующиеся на различных физикохимических аспектах каталитического действия. Их можно подразделить на 2 группы  [c.84]

    Исходя из основного постулата о химической природе взаи — модействия в каталитической реакционной системе, можно сформулировать некоторые важные для предвидения каталитического действия термодинамические и кинетические принципы. [c.87]


    Катализаторы и механизм их каталитического действия [c.180]

    Добавки отрицательных ионов оказывают сильное каталитическое действие, вызывая изменение закона скорости. Скорость в этом случае оказывается зависящей либо от первой степени концентрации добавленного иона, либо от квадрата его концентрации. Константы равновесия для ассоциации большинства этих ионов с Ре " известны, и можно считать, что реакция идет через активированный комплекс, образующийся при взаимодействии Ре " и комплекса Ре . Следует учитывать, что закон скорости дает сведения только о числе комплексообразующих ионов, входящих в состав активированного комплекса, но не о том, каким образом они соединены между собой. Некоторые значения констант скоростей, полученных таким образом, приведены в табл. XVI.2. [c.505]

    Применение некоторых катализаторов значительно ускоряет процесс сернокислотной гидратации. Для этой цели используются соли железа, кобальта, никеля, меди, платины, серебра [41, 42], а также соединения висмута [43, 44]. Сульфат серебра [45, 46] и соли меди [47—49] сильно ускоряют гидролиз сложных эфиров серной кпслоты. Рекомендуется применять в качестве катализаторов галогениды бора пли бораты в соединении с сульфатами никеля и других тяжелых металлов [50]. Необходимые для этого реакционные условия определены Поповым [51]. При высоком давлении и высокой температуре каталитическое действие проявляют сульфаты органических оснований, например изопроииламина, анилина, наф-ти.талшна, хинолнна [52], а также сульфаты и галогениды цинка, магния, бериллия [53] и алюминия [54]. Соли алюминия обладают каталитическим действием при высоком давлении и низких температурах в водном растворе. Наконец, следует упомянуть еще кремневую или борвольфрамовую кислоту и их соли [55], однако процессы с их участием протекают прн 200—300 °С под давлением уже, в газообразной фа.зе. [c.60]

    Большое значение имеет, как уже говорилось, обеспечение требуемой степени чистоты исходных веществ, так как некоторые примеси в исходном сырье оказывают каталитическое действие на процесс конденсации или вызывают нежелательные побочные реакции. [c.345]

    При дегидрировании на катализаторе отлагается довольно много углерода, понижающего его активность. Этот углерод должен удаляться сжиганием в струе воздуха. В процессе Гудри таблетированпый катализатор смешан с большим числом алундовых шариков, которые сами каталитическим действием пе обп 1дают, но имеют большую теплоемкость. Тепло, освобождающееся при регенерации, воспринимается этим теплоносителем и отдается им в процессе дегидрирования. Теплоноситель препятствует также чрезмерному повышению температуры при регенерации, что чрезвычайно важно, так как при нагревании до 700—750° активность катализатора быстро ухудшается. [c.87]

    Почти для всех светлых топлив нормируется йодное число, как показатель наличия в них непредельных углеводородов, обусловливающих химическую нестойкость этих продуктов. Под влиянием температуры, кислорода воздуха, каталитического действия металлов, света и других факторов непредельные углеводороды быстро окисляются и полимеризуются. Это приводит к осмолению топлив и ухудшению их эксплуатационных свойств. [c.200]

    Можно полагать, что торможение окисления сернистыми соединениями больше обусловлено их способностью пассивировать каталитическое действие металлов вследствие образования защитной пленки, чем непосредственным воздействием этих соединений на окислительные цепи. [c.90]

    Кинетика анодного растворения металлов должна зависеть пе только от концентрации гидроксильных ионов, но и вообще от анионного состава раствора. Обычно принималось, что другие анноны в той или иной степени способны вытеснять ионы ОН с поверхности растворяющегося металла и тем самым снижать н каталитическое действие. С такой точкой зрения согласуется, например, замедление процесса растворения железа при переходе от сульфатных к хлоридным растворам с тем же pH. Ионы С1 обладают большей поверхностной активностью, чем иопы 504 или Н504", и замещают большее число ионов 0Н , т. е. заметнее снижают их каталитическое действие на процесс растворения. Однако в более общем случае, как это было показано Я. М. Колотыркиным с сотр., любые анионы способны, так же как и ионы ОН-, сами катализировать процесс анодного растворения металлов. Результативный эффект определяется поэтому конкретными условиями протекания процесса растворени.ч. В области низких pH, где концентрация ионов ОН мала и доля занятой ими поверхности растворяющегося металла незначительна, другие анионы (например, анионы серной кислоты) могут адсорбироваться на свободной поверхности, не уменьшая поверхностной концентрации гидроксильных ионов. В этих условиях скорость растворения должна расти при увеличении общей когщентрации анионов. При высоких pH, где концентрация ионов 0Н и доля занятой ими поверхности велики, на первый план выступает эффект вытеснения гидроксильных ионов другими анионами, и скорость растворения при повышении обшей концентрации анионон может уменьшаться. [c.478]


    Каталитическое действие металла практически прекращается, если он покрывается пленкой, образованной продуктами окисления. Следовательно, в работающих двигателях и механизмах роль катализаторов играют главным образом трущиеся поверхности, с которых защитная пленка непрерывно удаляется при контакте. [c.196]

    Органические соли меди, железа, кобальта в результате каталитического действия на окисление масел способствуют накоплению в них кислых, коррозионио Присутствие катализаторов снижает эффективность вносимых в масло ингибиторов окисления. В качестве гомогенных катализаторов жидкофазного окисления нефтепродуктов часто используют карбоксилаты металлов (стеараты, нафтенаты и др.) [102]. [c.77]

    Е. Ходж и Л. Свэллен [97] нашли, что можно исключить это нежелательное каталитическое действие, если к азотной кислоте прибавить небольшое количество нитратов калия или натрия. Образующаяся солевая пленка прекращает каталитический эффект и побочного процесса окисления не происходит. [c.290]

    Работы лаборатории Шелл девелопмент компани в Эмеривилле (США) привели к интересным результатам в области процессов окисления. Раст и Воган со своими сотрудниками в целом ряде исследований изучил,и влияние газообразного бромистого водорода на процессы окисления низших парафиновых углеводородов и установили его поразительное каталитическое действие [20]. [c.440]

    Каталитическое действие хлористого алюминия весьма специфично. Хотя среди изомерных пентанов 2,2-диметилпропан (неопентан) наиболее стабилен, при действии смеси хлористый алюминий — хлористый водород на изопентан или на н-пентан он не образуется. И, наоборот, неопентан, приготовленный другим способом в условиях, когда пентан легко подвергается изомеризации, не переходит даже в неэначительной степени ни в изопентан, ни в н-пентан. Монтгомери, Макэтир и Френк показали, что в присутствии бромистого алюминия в условиях, когда быстро устанавливается равновесие между н-пентаном и изопентаном,. 2,2-диметилпропан не изменяется даже в течение 2300 час. До сих пор не найден катализатор, который мог бы ускорить его изомеризацию [12. Напротив, при изомеризации н-гексана 2,2-диметилпропан (неогексан) получается легко. [c.515]

    Из многих предложенных комбинаций катализаторов в промышленности закрепилась система А1 (С2Н5)з — Т1С1з. Каталитическое действие Т1С1з зависит главным образом от его кристаллической структуры (табл. 30). В промышленности применяются в основном а-, у- и б-формы. [c.295]

    По протолитической теории Бреистеда каталитическое действие кислоты А объясняется тем, что она способна отдавать свой протон веществу, подвергающемуся химическому превраищиию, а каталитическое действие основания В — его способностью воспринимать протои от реагирующего соединения. В обоих случаях образуется промежуточный комплекс, превращеьие которого в конечные продукты реакции происходит легче, чем самих исходных веществ. [c.71]

    В последние годы все большее распрост )анепие получает так называемая высокочастотная кондуктометрия. В этом случае применяются переменные токи с частотами порядка нескольких миллионов герц. При таких высоких частотах электроды можно вывести нз раствора зг пределы ячейки (в которой проводятся измерения), что позволяет избежать мне гих осложнений, связанных с обычной кондуктометрией, а именно каталитического действия электродов на реакции в растворах, изменения поверхности электродов в ходе измерений, необходи.мости применения электродов из материала, стойкого по отношеникз к раствору, и т. д. [c.118]

    Типичное применение теории химической абсорбции основано на использовании данных о скорости массопередачн для оценки констант скорости довольно быстрых реакций. Это представляет особый интерес в катализируемых реакциях. Случаи такого типа могут быть найдены в серии статей Данквертса с сотрудниками [9—11] по каталитическому действию различных веществ на реакцию двуокиси углерода с водой. Скорость последней может увеличиваться иод действием катализаторов, так что реакция становится конкурентной с прямой реакцией между СО2 и ОН даже при довольно высоких значениях pH, таких, например, какие наблюдаются в буферных растворах. Джеффрейс и Буль [12] пришли к такому же заключению. В случае карбонизированных растворов амина величина pH настолько мала, что даже в отсутствие катализаторов реакция двуокиси углерода с водой значима (см. раздел 14.1). Неудивительно, что в этой реакции катализатор увеличивает скорость на порядки, как показано Астарита, Марруччи и Джойя [13], [c.164]

    Надо отметить, что в катализе одинаково важны как физичес — кие так и химические закономерности каталитического действия. Так без знания химической сущности (то есть "химизма") катализа невозможен научно обоснованный подбор типа и химического сос ава катализатора. А кинетическое описание каталитической реакции на данном катализаторе невозможно без знания закогЕО — мерностей физических (точнее физико-химических) процессов, протекающих на границе раздела фаз, например, адсорбционных (хемосорбционных) процессов. [c.85]

    УстановАена определенная закономерность ме жду специфичностью каталитического действия и типом кристаллической структуры твердых тел. Каталитической активностью ионного и электронного типов обладают твердые тела соответственно с ионной и металлической кристаллической структурой, а также кристаллы промежуточного (ионно — металлического) типа. Молекулярные и ковалентные кристаллы в отношении катализа практически инер — ти ы. [c.88]

    Окислительно — восстановительные реакции. Из двух перечисленных выше типов реакций в гетерогенном катализе наиболее изучены окислительно — восстановительные. Они широко использовались как модельные реакции при разработке многих частных теорий катализа (промежуточных химических соединений Сабатье и В.Н. Ипатьева, мультиплетной теории A.A. Баландина, активных ансамблей Н.И. Кобозева, неоднородной поверхности Р.З. Рогин — ского, химической концепции катализа Г.К. Борескова и др.) и в особе нности при решении центральной проблемы в гетерогенном ката изе — проблемы предвидения каталитического действия. Успешное ее решение позволит создать научную основу подбора оптимальных катализаторов и разработать единую теорию катализа, обла/,,ающую главным достоинством — способностью предсказывать, а не только удовлетворительно объяснять наблюдаемые от — делььые факты. [c.159]

    Результаты работ Синфелта и сотр. [17—20] по исследованию влияния парциальных давлений этана и водорода на скорость гидрогенолиза достаточно хорошо согласуются с механизмом, предложенным Тейлором [2, 13]. При этом порядок реакции по углеводороду близок к единице и отрицателен по водороду. Полученные данные хорошо согласуются также с представлениями об интенсивном дегидрировании на поверхности, предшествующем медленной стадии разрыва С—С-св>1зей. Синфелтом [20] на примере гидрогенолиза алканов рассмотрена связь активности и селективности металлических катализаторов с положением металла в периодической системе элементов, а также некоторые вопросы определения дисперсности металлов, особенности их каталитического действия, катализ на биметаллических системах и сплавах. Отмечено, что тип активных центров на поверхности металла определяется его дисперсностью. Доля координационно ненасыщенных атомов, расположенных на ребрах и вершинах кристаллов, резко увеличивается с уменьшением размеров кристаллитов и почти равна единице в случае кластеров, включающих несколько атомов. Этим обусловлено влияние дисперсности металла на удельную активность металлических катализаторов, что проявляется для большой группы структурно-чувствительных реакций. При катализе на сплавах важное значение приобретает возможное различие составов на поверхности и в объемах сплавов. Введение в систему даже малого количества более летучего компонента часто приводит к значительному обогащению им поверхности сплава. [c.91]

    К гидрокаталитическим в нефтепереработке относятся про — цессы, осуществляемые в среде водорода в присутствии катализа — торс В. По специфичности каталитического действия гидрокатали — тичс ские процессы можно классифицировать на следующие типы  [c.175]

    Селективность каталитического действия в процессах селективного гидрокрекинга (СГК) достигается применением специаль — них катализаторов на основе модифицированных высококремне— земных цеолитов, обладающих молекулярно— ситовым свойством. Катализаторы СГК имеют трубчатую пористую структуру с разме — рсМи входных окон 0,5 — 0,55 нм, доступными для проникновения и рс агирования там только молекулам парафинов нормального с тро — ег ИЯ. Для гидрирования образующихся продуктов крекинга в цеолит ВЕодят обычные гидрирующие компоненты (металлы У1П и VI групп). [c.234]

    Каталитическое действие ионов металлов на окисление масла подавляется соединениями другой группы антиокислительных присадок - деактиваторами металлов (metal dea tivators). В качестве деактиваторов применяются органические соединения (эти-лендиамины, органические кислоты), связывающие ионы металлов в неактивные комплексы. В последнее время в зарубежной литературе появились данные, что небольшое количество ионов меди в моторных маслах наоборот, является эффективным антиоксидантом и специально вводится в некоторые сорта масел. Этот момент следует учитывать при анализе работающих или отработанных моторных масел. [c.32]

    Термическое разложение аммиачной селитры значительно ускоряется в присутствии азотной, серной и соляной кислот. Скорость термического разложения аммиачной селитры, содержащей 5% свободной азотной кислоты, при 200°С в 100 раз выше скорости разложения чистой аммиачной селитры. В присутствии кислоты снижается температура начала разложения селитры. При повышении содержания свободной кислоты до 1% температура начала активного разложения селитры снижается с 210 до 185—190 °С. Каталитическое действие на термическое разложение селитры оказывают примеси хлоридов, хроматов, соединения кобальта. При содержании хлоридов в селитре до 0,15% (в пересчете иа ноны хлора) температура разложения снижается до 193 °С, а в присутствии 1% азотной кислоты она снижается до 180 °С при этом скорость разложения увеличивается в два раза. Например, при на-греваиии смеси хлорида с селитрой до 220—230 °С последняя бурно разлагается с выделением большого количества тепла при более высоком содержании хлорида происходит полное разложение селитры. [c.48]

    В работе [166] исследована активность промотиро-ванных катализаторов Pt/AljOa в реакциях С5- и Сб-де-гидроциклизации изобутилбензола и обсуждена связь между электронным состоянием и каталитическим действием этих катализаторов. В качестве исходного применяли промышленный катализатор Pt/AbOs, содержащий 0,35% Pt, и промотировали его добавками Pd, Ir, Со, Re или Аи (до суммарного содержания металлов 0,6%). Для сравнения был приготовлен катализатор, содержащий 0,6% Pt, добавлением 0,25% Pt к исходному промышленному катализатору. Исходя из электронной структуры полученных катализаторов, авторы раз- [c.249]

    Влияние катализатора может сказываться не только на скорости окисления и длительности индукционного периода, но и на внутристадийном превращении одних продуктов окисления в другие, а также на характере конечных продуктов [101]. По некоторым данным, металлы катализируют окисление в основном в тех случаях, когда они образуют соли с кислотами. Чаще всего это происходит в присутствии воды и кислорода воздуха. Каталитическое действие металла прекращается, если он покрывается защитной пленкой, создаваемой продуктами окисления. Большая часть исследователей считает, что основную роль в катализирующем действии солей оказывает катион [96]. При этом, однако, соли одного и того же металла, но разных кислот могут обладать неодинаковой катализирующей активностью, т. е. активность солей может зависеть не только от катиона, но и от аниона. Анион может и не оказывать принципиального действия, а может влиять, например, на растворимость соли в масле и таким образом косвенно воздействовать на эффективность металлического катализатора. [c.77]


Библиография для Каталитическое действие: [c.184]   
Смотреть страницы где упоминается термин Каталитическое действие: [c.221]    [c.238]    [c.273]    [c.276]    [c.160]    [c.181]    [c.69]    [c.316]    [c.123]    [c.84]    [c.336]    [c.101]    [c.115]   
Химия и периодическая таблица (1982) -- [ c.0 ]

Лекционные опыты по общей химии (1950) -- [ c.0 ]

Колориметрическое определение следов металлов (1949) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте